HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。

一、定义

HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!

public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

二、构造函数

HashMap提供了三个构造函数:

HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。

在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。

HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:

从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:

public HashMap(int initialCapacity, float loadFactor) {
//初始容量不能<0
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: "
+ initialCapacity);
//初始容量不能 > 最大容量值,HashMap的最大容量值为2^30
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//负载因子不能 < 0
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: "
+ loadFactor); // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1; this.loadFactor = loadFactor;
//设置HashMap的容量极限,当HashMap的容量达到该极限时就会进行扩容操作
threshold = (int) (capacity * loadFactor);
//初始化table数组
table = new Entry[capacity];
init();
}

从源码中可以看出,每次新建一个HashMap时,都会初始化一个table数组。table数组的元素为Entry节点。

static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash; /**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
.......
}

其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。

上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。

四、存储实现:put(key,vlaue)

首先我们先看源码

public V put(K key, V value) {
//当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因
if (key == null)
return putForNullKey(value);
//计算key的hash值
int hash = hash(key.hashCode()); ------(1)
//计算key hash 值在 table 数组中的位置
int i = indexFor(hash, table.length); ------(2)
//从i出开始迭代 e,找到 key 保存的位置
for (Entry<K, V> e = table[i]; e != null; e = e.next) {
Object k;
//判断该条链上是否有hash值相同的(key相同)
//若存在相同,则直接覆盖value,返回旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value; //旧值 = 新值
e.value = value;
e.recordAccess(this);
return oldValue; //返回旧值
}
}
//修改次数增加1
modCount++;
//将key、value添加至i位置处
addEntry(hash, key, value, i);
return null;
}

通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。

2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。

static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。

static int indexFor(int h, int length) {
return h & (length-1);
}

HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

这里我们假设length为16(2^n)和15,h为5、6、7。

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。

这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

void addEntry(int hash, K key, V value, int bucketIndex) {
//获取bucketIndex处的Entry
Entry<K, V> e = table[bucketIndex];
//将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
//若HashMap中元素的个数超过极限了,则容量扩大两倍
if (size++ >= threshold)
resize(2 * table.length);
}

这个方法中有两点需要注意:

      一是链的产生。这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

      二、扩容问题。

随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

五、读取实现:get(key)

相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。

public V get(Object key) {
// 若为null,调用getForNullKey方法返回相对应的value
if (key == null)
return getForNullKey();
// 根据该 key 的 hashCode 值计算它的 hash 码
int hash = hash(key.hashCode());
// 取出 table 数组中指定索引处的值
for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
//若搜索的key与查找的key相同,则返回相对应的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}

在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。

集合之HashMap的更多相关文章

  1. Java基础知识强化之集合框架笔记63:Map集合之HashMap嵌套ArrayList

    1. ArrayList集合嵌套HashMap集合并遍历. 需求:假设ArrayList集合的元素是HashMap.有3个.每一个HashMap集合的键和值都是字符串.元素我已经完成,请遍历. 结果: ...

  2. Java基础知识强化之集合框架笔记62:Map集合之HashMap嵌套HashMap

    1. HashMap嵌套HashMap  传智播客          jc    基础班                      陈玉楼  20                      高跃   ...

  3. Java基础知识强化之集合框架笔记57:Map集合之HashMap集合(HashMap<Student,String>)的案例

    1. HashMap集合(HashMap<Student,String>)的案例 HashMap<Student,String>键:Student      要求:如果两个对象 ...

  4. Java基础知识强化之集合框架笔记56:Map集合之HashMap集合(HashMap<String,Student>)的案例

    1. HashMap集合(HashMap<String,Student>)的案例 HashMap是最常用的Map集合,它的键值对在存储时要根据键的哈希码来确定值放在哪里. HashMap的 ...

  5. Java基础知识强化之集合框架笔记55:Map集合之HashMap集合(HashMap<Integer,String>)的案例

    1. HashMap集合(键是Integer,值是String的案例) 2. 代码示例: package cn.itcast_02; import java.util.HashMap; import ...

  6. Java基础知识强化之集合框架笔记54:Map集合之HashMap集合(HashMap<String,String>)的案例

    1. HashMap集合 HashMap集合(HashMap<String,String>)的案例 2. 代码示例: package cn.itcast_02; import java.u ...

  7. Map集合、HashMap集合、LinkedHashMap集合、Hashtable集合、Collections工具类和模拟斗地主洗牌和发牌

    1.Map集合概述和特点 * A:Map接口概述  * 查看API可以知道:          * 将键映射到值的对象          * 一个映射不能包含重复的键          * 每个键最多 ...

  8. JDK(九)JDK1.7源码分析【集合】HashMap的死循环

    前言 在JDK1.7&1.8源码对比分析[集合]HashMap中我们遗留了一个问题:为什么HashMap在调用resize() 方法时会出现死循环?这篇文章就通过JDK1.7的源码来分析并解释 ...

  9. JDK(八)JDK1.7&1.8源码对比分析【集合】HashMap

    前言 在JDK1.8源码分析[集合]HashMap文章中,我们分析了HashMap在JDK1.8中新增的特性(引进了红黑树数据结构),但是为什么要进行这个优化呢?这篇文章我们通过对比JDK1.7和1. ...

  10. 【转】Java集合:HashMap源码剖析

    Java集合:HashMap源码剖析   一.HashMap概述二.HashMap的数据结构三.HashMap源码分析     1.关键属性     2.构造方法     3.存储数据     4.调 ...

随机推荐

  1. Linux学习8-Linux常用命令(4)

    链接命令     命令名称:ln 命令英文原意:link 命令所在路径:/bin/ln 执行权限:所有用户 功能描述:生成链接文件 语法:ln 选项[-s][原文件] [目标文件] 选项: -s 创建 ...

  2. 连接数据库 JDBC、DBCP、JNDI

    一.JDBC package com.direct.util; import java.sql.Connection; import java.sql.DriverManager; import ja ...

  3. Wampserver环境配置

    ☆根目录修改问题 /.修改运行根目录 1.修改apache配置,将服务请求定位到新目录下 →左击wampserver,点击Apache打开httpd.conf文件,Ctrl+f搜索documentro ...

  4. 【项目管理】git和码云的使用

    缘起 说了那么多关于git和码云相关的事,一直都没给大伙讲解这个码云究竟是个啥玩意儿. 今天就给大伙说说如何通过git和码云搭建属于自己的代码库. 码云 码云(Git@OSC)是开源中国社区团队推出的 ...

  5. 手动搭建 redis 集群

    转自http://meia.fun/article/1544161420745 手动搭建 redis 集群 redis 基本命令: 启动 redis 服务:redis-server xxx.conf ...

  6. Oracle EBS 配置文件取值

    SELECT op.profile_option_id, tl.profile_option_name, tl.user_profile_option_name, lv.level_id, lv.文件 ...

  7. Oracle EBS 启动调试日志

    SELECT   * FROM dba_source t WHERE t.TEXT LIKE '%PO_PDOI_TAX_CALCULATION_ERR%' FND:启用调试日志 FND:调试日志级别 ...

  8. Oracle EBS 更新客户地点

    --更新客户地点 declare x_return_status ); x_msg_count NUMBER; x_msg_data ); x_profile_id NUMBER; l_locatio ...

  9. Oracle AP更新供应商

    /*l_return_status:S l_msg_count:0 l_msg_data: l_vendor_id:133003 l_party_id:236055  */ DECLARE    l_ ...

  10. 【 PostgreSQL】后台周期执行函数实例(shell+crontab)

    工作中常见函数后台周期执行的情况,Oracle有job实现,gp数据库可以通过shell+crontab实现.流程如下: gpadmin用户下创建函数sh脚本. 将sh挂在crontab任务上 ### ...