ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)
为什么老是碰上
扩展欧几里德算法
( •̀∀•́ )最讨厌数论了
看来是时候学一学了
度娘百科说:
首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了)
所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了)
所以,这个公式我们写作ax+by = d,(gcd(a, b) | d)
gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见
那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式
#include<cstdio>
typedef long long LL;
void extend_Eulid(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
extend_Eulid(b, a % b, y, x, d);
y -= x * (a / b);
}
}
int main(){
LL a, b, d, x, y;
while(~scanf("%lld%lld", &a, &b)){
extend_Eulid(a, b, x, y, d);
printf("%lld*a + %lld*b = %lld\n", x, y, d);
}
}
有些人喜欢极度简化,这是病,得治(,,• ₃ •,,)比如在下
void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y){
if(!b){d = a; x = ; y = ;}
else{ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}
连名字都简化了。。。
( •̀∀•́ )解完了
睡觉~~~
ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)的更多相关文章
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- acm数论之旅---扩展欧几里得算法
度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...
- ACM数论之旅1---素数(万事开头难(>_<))
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...
- acm数论之旅(转载)--素数
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...
随机推荐
- Kubernetes学习之路(十六)之存储卷
目录 一.存储卷的概念和类型 二.emptyDir存储卷演示 三.hostPath存储卷演示 四.nfs共享存储卷演示 五.PVC和PV的概念 六.NFS使用PV和PVC 1.配置nfs存储 2.定义 ...
- Oracle GUID转换为String
Oracle中guid属于Raw(16)类型, 查询的时候如果不使用下面的函数, 程序中得到的是数组(byte[]). 在extjs环境下, 会带来数组的反序列化问题(newtonsoft.json) ...
- ubuntu下su: Authentication failure的解决办法(su和su - root的区别)
参考:ubuntu下su: Authentication failure的解决办法(su和su - root的区别)
- restful framework之认证组件
一.认证介绍 只有认证通过的用户才能访问指定的url地址,比如:查询课程信息,需要登录之后才能查看,没有登录,就不能查看,这时候需要用到认证组件 二.局部使用 (1)models层: class Us ...
- PLSQL Developer 客户端没有TNS监听,无法连接数据库
在Windows Server 2008 中安装了 64位的Oracle,好不容易将监听做好,在使用客户端 PLSQL Developer 的时候发现竟然没有TNS监听. 问题如下: 如上图所示,打开 ...
- 新建一个Java Web程序
依次选择 File——New——Web——Dynamic Web Project 输入项目名称“MyWebProject”,选择好Apache Tomcat V9.0服务器,其他采用默认配置. 单击N ...
- 网络编程的演进——从Apache到Nginx
Apache 1.Apache HTTP服务器是 Robert McCool 在1995年写成,并在1999年开始在Apache软件基金会的 框架下进行开发. 由于Apache HTTP服务器是基金会 ...
- 机器学习之利用KNN近邻算法预测数据
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 ...
- Jmeter介绍1
要测试的响应字段: 响应文本:即响应的数据,比如json等文本 响应代码:http的响应代码,比如200,302,404这些 响应信息:http响应代码对应的响应信息,列如OK,Found Respo ...
- Jmeter参数的AES加密使用
在Jmeter日常实践中,大家应该都遇到过接口传参需要加密的情况.以登陆为例,用户名和密码一般都需要进行加密传输,在服务端再进行解密,这样安全系数会更高,但在使用jmeter进行接口测试的时候,怎样发 ...