为什么老是碰上

扩展欧几里德算法

( •̀∀•́ )最讨厌数论了

看来是时候学一学了

度娘百科说:

首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了)

所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了)

所以,这个公式我们写作ax+by = d,(gcd(a, b) | d)

gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见

那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式

 #include<cstdio>
typedef long long LL;
void extend_Eulid(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
extend_Eulid(b, a % b, y, x, d);
y -= x * (a / b);
}
}
int main(){
LL a, b, d, x, y;
while(~scanf("%lld%lld", &a, &b)){
extend_Eulid(a, b, x, y, d);
printf("%lld*a + %lld*b = %lld\n", x, y, d);
}
}

有些人喜欢极度简化,这是病,得治(,,• ₃ •,,)比如在下

 void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y){
if(!b){d = a; x = ; y = ;}
else{ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}

连名字都简化了。。。

( •̀∀•́ )解完了

睡觉~~~

ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)的更多相关文章

  1. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  2. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  3. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  4. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  5. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  6. ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))

    数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a +  b) % p = (a% ...

  7. acm数论之旅---扩展欧几里得算法

    度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. Kubernetes学习之路(十六)之存储卷

    目录 一.存储卷的概念和类型 二.emptyDir存储卷演示 三.hostPath存储卷演示 四.nfs共享存储卷演示 五.PVC和PV的概念 六.NFS使用PV和PVC 1.配置nfs存储 2.定义 ...

  2. Oracle GUID转换为String

    Oracle中guid属于Raw(16)类型, 查询的时候如果不使用下面的函数, 程序中得到的是数组(byte[]). 在extjs环境下, 会带来数组的反序列化问题(newtonsoft.json) ...

  3. ubuntu下su: Authentication failure的解决办法(su和su - root的区别)

    参考:ubuntu下su: Authentication failure的解决办法(su和su - root的区别)

  4. restful framework之认证组件

    一.认证介绍 只有认证通过的用户才能访问指定的url地址,比如:查询课程信息,需要登录之后才能查看,没有登录,就不能查看,这时候需要用到认证组件 二.局部使用 (1)models层: class Us ...

  5. PLSQL Developer 客户端没有TNS监听,无法连接数据库

    在Windows Server 2008 中安装了 64位的Oracle,好不容易将监听做好,在使用客户端 PLSQL Developer 的时候发现竟然没有TNS监听. 问题如下: 如上图所示,打开 ...

  6. 新建一个Java Web程序

    依次选择 File——New——Web——Dynamic Web Project 输入项目名称“MyWebProject”,选择好Apache Tomcat V9.0服务器,其他采用默认配置. 单击N ...

  7. 网络编程的演进——从Apache到Nginx

    Apache 1.Apache HTTP服务器是 Robert McCool 在1995年写成,并在1999年开始在Apache软件基金会的 框架下进行开发. 由于Apache HTTP服务器是基金会 ...

  8. 机器学习之利用KNN近邻算法预测数据

    前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定  ...

  9. Jmeter介绍1

    要测试的响应字段: 响应文本:即响应的数据,比如json等文本 响应代码:http的响应代码,比如200,302,404这些 响应信息:http响应代码对应的响应信息,列如OK,Found Respo ...

  10. Jmeter参数的AES加密使用

    在Jmeter日常实践中,大家应该都遇到过接口传参需要加密的情况.以登陆为例,用户名和密码一般都需要进行加密传输,在服务端再进行解密,这样安全系数会更高,但在使用jmeter进行接口测试的时候,怎样发 ...