ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)
为什么老是碰上
扩展欧几里德算法
( •̀∀•́ )最讨厌数论了
看来是时候学一学了
度娘百科说:
首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了)
所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了)
所以,这个公式我们写作ax+by = d,(gcd(a, b) | d)
gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见
那么已知 a,b 求 一组解 x,y 满足 ax+by = gcd(a, b) 这个公式
#include<cstdio>
typedef long long LL;
void extend_Eulid(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
extend_Eulid(b, a % b, y, x, d);
y -= x * (a / b);
}
}
int main(){
LL a, b, d, x, y;
while(~scanf("%lld%lld", &a, &b)){
extend_Eulid(a, b, x, y, d);
printf("%lld*a + %lld*b = %lld\n", x, y, d);
}
}
有些人喜欢极度简化,这是病,得治(,,• ₃ •,,)比如在下
void ex_gcd(LL a, LL b, LL &d, LL &x, LL &y){
if(!b){d = a; x = ; y = ;}
else{ex_gcd(b, a%b, d, y, x); y -= x*(a/b);}
}
连名字都简化了。。。
( •̀∀•́ )解完了
睡觉~~~
ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)的更多相关文章
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))
数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 (a + b) % p = (a% ...
- acm数论之旅---扩展欧几里得算法
度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...
- ACM数论之旅1---素数(万事开头难(>_<))
前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...
- acm数论之旅(转载)--素数
https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...
随机推荐
- 提交到开源git时出现:fatal: refusing to merge unrelated histories的解决办法
解决办法 创建本地库和fetch远程分支这些前面的步骤这里略过.可以自行百度. 解决办法: 1.cmd进入项目的根目录. 2.执行下面的命令:git pull origin master --al ...
- lemon批量蒯
RT,很久以前写的拿出来骗一骗访问量 把sh文件扔进source里面运行sh *.sh 从子目录蒯出来: #!/bin/bash for file in ./*/*/*.cpp do name=${f ...
- 关于Mybatis的Example(and ,or )应用
近期的一个项目中遇到Mybatis的Example的and or 的应用,感觉有必要记录一下(个人见解,有问题请指出.谢谢) 1.在Example中的每一个Criteria相当于一个括号,把里面的内容 ...
- pymysql模块使用教程
一.操作数据库模板 pymysql是Python中操作mysql的模块,(使用方法几乎和MySQLdb相同,但是在Python3中,mysqldb这个库已经不能继续使用了) 下载安装方法: 方法一. ...
- How to access business objects with their related ObjectSpaces (Multi-Database Environment)
https://www.devexpress.com/Support/Center/Question/Details/T565897/how-to-access-business-objects-wi ...
- Linux shell 编写(1)
shell脚本的编写步骤 1.创建以.sh为扩展名的文件 touch 2.编辑脚本文件 vim 3.增加脚本文件执行权限 ...
- 6.把建模工具导出的dea文件导入到three.js程序中
1.使用Three.js渲染导出的DAE 在Three.js中使用Collada(即.dae)文件的话,首先得要用到 ColladaLoader.js. 但是这个ColladaLoader.js并不包 ...
- Cocos2d-x的跨平台原理
为了充分发挥硬件性能,手机游戏通常使用Native App开发模式,这就造成开发商要为iOS 和Android平台用户开发不同的应用,无论是产品迭代还是运行维护都非常麻烦.Cocos2d-x在iOS, ...
- Django FBV/CBV、中间件、GIT使用
s5day82 内容回顾: 1. Http请求本质 Django程序:socket服务端 a. 服务端监听IP和端口 c. 接受请求 \r\n\r\n:请求头和请求体 \r\n & reque ...
- 笨办法学Python - 习题11-12: Asking Questions & Prompting People
目录 1.习题 11: 提问 2.习题 12: 提示别人 3.总结 1.习题 11: 提问 学习目标:了解人机交互场景,熟悉raw_input 的用法. 1.在 Python2.x 中 raw_inp ...