题目描述

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。

对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。

为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1≤n≤100000)的正整数序列s(1≤si≤n),对于m(1≤m≤1000000)次询问l,r,a,b,每次输出sl⋯sr中,权值∈[a,b]的权值的种类数。

输入输出格式

输入格式:

第一行包括两个整数n,m(1≤n≤100000,1≤m≤1000000),表示数列s中的元素数和询问数。

第二行包括n个整数s1…sn(1≤si≤n)。

接下来m行,每行包括4个整数l,r,a,b(1≤l≤r≤n,1≤a≤b≤n),意义见题目描述。

保证涉及的所有数在C++的int内。保证输入合法。

输出格式:

对每个询问,单独输出一行,表示sl⋯sr中权值∈[a,b]的权值的种类数。

输入输出样例

输入样例#1:

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
输出样例#1:

2
0
0
2
1
1
1
0
1
2

说明

【样例的部分解释】

5 9 1 2 子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。

3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。

4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。

2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。

建议使用输入/输出优化。

Solution:

  本题根号过1e6的莫队,神奇~。

  本题需要求的是区间在值域范围内的种类数。

  我们直接离线做莫队,记录下每个块的左右边界(由于值域和操作区间范围都是$[1,n]$,所以分一次块就够了),统计每次指针变换后的每个块内元素出现的种类数,那么对于查询$(l,r,a,b)$,先把指针移到区间$[l,r]$(这里块按下标),累加$a$到$b$的所在块(这里块按值域)之间出现的种类数就好了。

  时间复杂度$O((n+m)\sqrt n)$(我也不知道怎么能过~)。

代码:

/*Code by 520 -- 10.4*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,s[N],tot[N];
int sum[],bl[N],ln[N],rn[N],ans[N*];
struct node{
int l,r,a,b,id;
bool operator < (const node &a) const {return bl[l]==bl[a.l]?r<a.r:l<a.l;}
}q[N*]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int v){if((++tot[v])==)sum[bl[v]]++;} il void del(int v){if(!(--tot[v]))sum[bl[v]]--;} il int query(int a,int b){
int l=bl[a],r=bl[b],res=;
for(RE int i=l+;i<r;i++) res+=sum[i];
if(l==r) For(i,a,b) res+=(tot[i]>);
else {
For(i,a,rn[l]) res+=(tot[i]>);
For(i,ln[r],b) res+=(tot[i]>);
}
return res;
} int main(){
n=gi(),m=gi();int blo=sqrt(n);
For(i,,n) s[i]=gi(),bl[i]=(i-)/blo+;
For(i,,n) {
rn[bl[i]]=i;
if(!ln[bl[i]]) ln[bl[i]]=i;
}
For(i,,m) q[i]=node{gi(),gi(),gi(),gi(),i};
sort(q+,q+m+);
for(RE int i=,l=,r=;i<=m;i++){
while(l<q[i].l) del(s[l]),l++;
while(l>q[i].l) l--,add(s[l]);
while(r<q[i].r) r++,add(s[r]);
while(r>q[i].r) del(s[r]),r--;
ans[q[i].id]=query(q[i].a,q[i].b);
}
For(i,,m) printf("%d\n",ans[i]);
return ;
}

P4867 Gty的二逼妹子序列的更多相关文章

  1. 洛谷 P4867 Gty的二逼妹子序列

    链接: P4867 题意: 给出长度为 \(n(1\leq n\leq 10^5)\) 的序列 \(s\),保证\(1\leq s_i\leq n\).有 \(m(1\leq m\leq 10^6)\ ...

  2. 【题解】Luogu P4867 Gty的二逼妹子序列

    原题传送门 同Luogu P4396 [AHOI2013]作业 询问多了10倍,但还能跑过(smog #include <bits/stdc++.h> #define N 100005 # ...

  3. 洛谷P4867 Gty的二逼妹子序列(莫队+树状数组)

    传送门 本来打算用主席树 然后发现没办法维护颜色数 于是用了莫队加树状数组 然后竟然A了…… //minamoto #include<iostream> #include<cstdi ...

  4. [AHOI2013]作业 & Gty的二逼妹子序列 莫队

    ---题面--- 题解: 题目要求统计一个区间内数值在[a, b]内的数的个数和种数,而这个是可以用树状数组统计出来的,所以可以考虑莫队. 考虑区间[l, r]转移到[l, r + 1],那么对于维护 ...

  5. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

  6. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  7. Bzoj 3809: Gty的二逼妹子序列 莫队,分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  8. 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 链接 分析: 和这道AHOI2013 作业差不多.权值是1~n的,所以对权值进行分块.$O(1)$修改,$O(\sqrt n)$查询. 代码: #include< ...

  9. 【BZOJ 3809】 3809: Gty的二逼妹子序列 (莫队+分块)

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1728  Solved: 513 Description Autumn ...

随机推荐

  1. 微信小程序中的分享事件

    小程序的分享 onShareAppMessage(options)   在页面的js文件中定义了 onShareAppMessage 函数时,页面可以表示改页面可以转发.可以在函数中设置页面转发的信息 ...

  2. 利用VBS脚本实现Telnet自动连接

    把以下代码保存为*.vbs文件,替换IP.用户名.密码. Dim objShell Set objShell = CreateObject("Wscript.Shell") obj ...

  3. jmeter发送http请求(初学者)

    1.jmeter安装配置(百度,这里就不赘述了) 2.添加线程组 测试计划-->添加-->Threads-->线程组 3.线程组配置 线程数:用户数或者并发数,设置为100则有100 ...

  4. java中文显示乱码的解决方式

    myeclipse 10 import 源文件后java文件中文乱码问题,*.java文件中的中文不能显示,都是乱码 解决方法(网上找的,已经过验证): 一.将整个project设置编码UTF-8(U ...

  5. 配置centos7来支持xshell远程访问和xftp传输文件

    前提: 首先需要一台已装有centos7的电脑(虚拟机的配置这里不说明,这里用的是物理机) 背景: 在工作中访问linux的环境通常需要Xshell等终端软件,通过配置静态IP远程服务器进行管理开发. ...

  6. Unity学习笔记(5):动态加载Prefab

    第一种方法,从Resources文件夹读取Prefab Assets/Resources文件夹是Unity中的一个特殊文件夹,在博主当前的认知里,放在这个文件夹里的Prefab可以被代码动态加载 直接 ...

  7. 来源自rnnoise,但非rnn

    很快又一年过去了. 自学音频算法也近一年了. 不记得有多少个日日夜夜, 半夜醒来,就为验证算法思路. 一次又一次地改进和突破. 傻逼样的坚持,必然得到牛逼样的结果. 这一年,主要扎音频算法上. 经常有 ...

  8. Linux下出现permission denied的解决办法

    Linux下经常出现permission denied,原因是由于权限不足,有很多文章通过chmod命令更改权限为777,但是很不方便也不适合新手,简单粗暴的方法如下: 命令行中输入 sudo pas ...

  9. 如何在unix系统中用别的用户运行一个程序?

    1.问题的缘由 实际开发系统的时候,经常需要用别的用户运行一个程序.比如,有些系统为保证系统安全,不允许使用root来运行.这里,我们总结了unix系统下如何解决这个问题的一些方法.同时,我们还讨论如 ...

  10. Kettle日常使用汇总整理

    Kettle日常使用汇总整理 Kettle源码下载地址: https://github.com/pentaho/pentaho-kettle Kettle软件下载地址: https://sourcef ...