BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)
下称0类为单边,1类为互生边,2类为互斥边。对于一种匹配方案,考虑其出现的概率*2n后对答案的贡献,初始为1,如果有互斥边显然变为0,否则每有一对互生边其贡献*2。于是有一个显然的dp,即设f[S1][S2]为左边选取S1右边选取S2对答案的贡献。转移时考虑S1中编号最小的点x与右边的点y匹配。首先将f[S1-(1<<x)][S2-(1<<y)]统计进去。然后若(x,y)是单边,或者虽存在互生互斥关系,但其对应边的左端点还不在S1中或就是x,或右端点还不在S2中或就是y,就不管了;否则若互斥将f[S1-(1<<x)-(1<<x')][S2-(1<<y)-(1<<y')]减掉,若互生将f[S1-(1<<x)-(1<<x')][S2-(1<<y)-(1<<y')]加上,其中(x',y')是(x,y)的对应边。这样大概就是C(30,15)*15的。
但是这只有暴力20分,甚至连空间都开不下。然而满分做法和他是一个复杂度的。对上面的做法改为记忆化搜索,map存储状态就可以了。多了log也多了80分。不是非常理解意义何在。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define N 15
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,typ[N][N],match[N][N][],s[<<N];
map<int,int> f;
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
inline int trans(int n,int m){return n<<N|m;}
int solve(int i,int j)
{
if (f.find(trans(i,j))!=f.end()) return f[trans(i,j)];
int x=i&-i,ans=;
for (int t=j,k=t&-t;t;t^=k,k=t&-t)
if ((k&j)&&typ[s[x]][s[k]]>=)
{
inc(ans,solve(i^x,j^k));
int u=match[s[x]][s[k]][],v=match[s[x]][s[k]][];
if ((u&i)&&(v&j)&&x!=u&&k!=v)
{
if (typ[s[x]][s[k]]==) inc(ans,solve(i^x^u,j^k^v));
if (typ[s[x]][s[k]]==) inc(ans,P-solve(i^x^u,j^k^v));
}
}
f[trans(i,j)]=ans;return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5006.in","r",stdin);
freopen("bzoj5006.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(typ,,sizeof(typ));
for (int i=;i<=m;i++)
{
int op=read(),x=read()-,y=read()-;
if (op==) typ[x][y]=;
else
{
int p=read()-,q=read()-;
typ[x][y]=typ[p][q]=op;
match[x][y][]=<<p,match[x][y][]=<<q;
match[p][q][]=<<x,match[p][q][]=<<y;
}
}
for (int i=;i<n;i++) s[<<i]=i;
f[]=;
cout<<solve((<<n)-,(<<n)-);
return ;
}
BZOJ5006 THUWC2017随机二分图(概率期望+状压dp)的更多相关文章
- Luogu4547 THUWC2017 随机二分图 概率、状压DP
传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...
- BZOJ3925: [Zjoi2015]地震后的幻想乡【概率期望+状压DP】
Description 傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们. 这不,幻想乡突然发生了地震,所有的道路都崩塌了.现在的首要任 ...
- 2018.09.23 bzoj1076: [SCOI2008]奖励关(期望+状压dp)
传送门 一道神奇的期望状压dp. 用f[i][j]f[i][j]f[i][j]表示目前在第i轮已选取物品状态为j,从现在到第k轮能得到的最大贡献. 如果我们从前向后推有可能会遇到不合法的情况. 所以我 ...
- 【xsy1596】旅行 期望+状压DP
题目大意:有$m$个人要从城市$1$开始,依次游览城市$1$到$n$. 每一天,每一个游客有$p_i$的概率去下一个城市,和$1-p_i$的概率结束游览. 当游客到达城市$j$,他会得到$(1+\fr ...
- [BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)
https://loj.ac/problem/2290 题解:https://blog.csdn.net/Vectorxj/article/details/78905660 不是很好理解,对于边(x1 ...
- “景驰科技杯”2018年华南理工大学程序设计竞赛 A. 欧洲爆破(思维+期望+状压DP)
题目链接:https://www.nowcoder.com/acm/contest/94/A 题意:在一个二维平面上有 n 个炸弹,每个炸弹有一个坐标和爆炸半径,引爆它之后在其半径范围内的炸弹也会爆炸 ...
- 状压DP小拼盘
有的DP题,某一部分的状态只有两种,选或不选. 开数组记录,代价太大,转移不方便. 状态压缩意为,用 “0/1“ 表示 “选/不选“ . 把状态表示为二进制整数. There are 10 kinds ...
- [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP
分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...
- BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
随机推荐
- Async方法死锁的问题 Don't Block on Async Code(转)
今天调试requet.GetRequestStreamAsync异步方法出现不返回的问题,可能是死锁了.看到老外一篇文章解释了异步方法死锁的问题,懒的翻译,直接搬过来了. http://blog.st ...
- CF刷题-Codeforces Round #481-G. Petya's Exams
题目链接:https://codeforces.com/contest/978/problem/G 题目大意:n天m门考试,每门考试给定三个条件,分别为:1.可以开始复习的日期.2.考试日期.3.必须 ...
- 3、ObjectARX开发创建直线、圆、圆弧和修改对象属性
一.本节课程 Arx二次开发创建直线.圆.圆弧和修改对象属性 二.本节要讲解的知识点 1.如何应用C++ ARX二次开发创建直线. 2.如何应用C++ ARX二次开发创建圆. 3.如何应用C++ AR ...
- 【 C# 】(一) ------------- 泛型带头节点的单链表,双向链表实现
在编程领域,数据结构与算法向来都是提升编程能力的重点.而一般常见的数据结构是链表,栈,队列,树等.事实上C#也已经封装好了这些数据结构,在头文件 System.Collections.Generic ...
- move.js运动插件
move.js 运动插件是一款针对元素动画效果的插件.可以运用此插件制作出各类元素效果. 插件GitHub地址:https://github.com/visionmedia/move.js 下面整理学 ...
- LeetCode 刷题笔记 155. 最小栈(Min Stack)
tag: 栈(stack) 题目描述 设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈. push(x) -- 将元素 x 推入栈中. pop() -- 删除栈顶的元素 ...
- [转载]使用mpvue搭建一个初始小程序
1. 初始化一个 mpvue 项目 现代前端开发框架和环境都是需要 Node.js 的,如果没有的话,请先下载 nodejs 并安装. 然后打开命令行工具: # 1. 先检查下 Node.js 是否安 ...
- 高可用Kubernetes集群-16. ansible快速部署
说明 本文档指导采用二进制包的方式快速部署高可用kubernetes集群. 脚本托管:k8s-ansible(持续更新) 参考:高可用kubernetes集群 组件版本 组件 版本 备注 centos ...
- linux命令系列 grep
grep, egrep, fgrep - print lines matching a pattern SYNOPSIS grep [OPTIONS] PATTERN [FILE...] grep [ ...
- linux获得命令使用帮助
1. 内部命令: help CMD 2. 外部命令: CMD --help 3. 命令手册: manual(所有命令) man CMD 分章节: 1: 用户命令(User Commands - /bi ...