P1939 【模板】矩阵加速(数列)

题目描述

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

求a数列的第n项对1000000007(10^9+7)取余的值。

输入输出格式

输入格式:

第一行一个整数T,表示询问个数。

以下T行,每行一个正整数n。

输出格式:

每行输出一个非负整数表示答案。

说明

对于30%的数据 n<=100;

对于60%的数据 n<=2*10^7;

对于100%的数据 T<=100,n<=2*10^9;


直接套矩阵快速幂即可


Code:

#include <cstdio>
#include <cstring>
#define ll long long
const ll mod=1e9+7;
int n,t;
struct matrix
{
ll dx[4][4];
matrix()
{
memset(dx,0,sizeof(dx));
}
matrix friend operator *(matrix n1,matrix n2)
{
matrix n3;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
for(int k=1;k<=3;k++)
n3.dx[i][j]=(n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j])%mod;
return n3; }
}f,d,ans;
void quick(int k)
{
while(k)
{
if(k&1)
f=f*d;
d=d*d;
k>>=1;
}
}
void init()
{
ans.dx[1][1]=1,ans.dx[1][2]=1,ans.dx[1][3]=1;
ans.dx[2][1]=0,ans.dx[2][2]=0,ans.dx[2][3]=0;
ans.dx[3][1]=0,ans.dx[3][2]=0,ans.dx[3][3]=0;
f.dx[1][1]=1,f.dx[1][2]=0,f.dx[1][3]=0;
f.dx[2][1]=0,f.dx[2][2]=1,f.dx[2][3]=0;
f.dx[3][1]=0,f.dx[3][2]=0,f.dx[3][3]=1;
d.dx[1][1]=1,d.dx[1][2]=1,d.dx[1][3]=0;
d.dx[2][1]=0,d.dx[2][2]=0,d.dx[2][3]=1;
d.dx[3][1]=1,d.dx[3][2]=0,d.dx[3][3]=0;
}
void work()
{
scanf("%d",&t);
while(t--)
{
init();
scanf("%d",&n);
if(n>3)
{
quick(n-3);
ans=ans*f;
printf("%d\n",ans.dx[1][1]);
}
else
printf("1\n");
}
}
int main()
{
work();
return 0;
}

2017.7.2

洛谷 P1939 【模板】矩阵加速(数列) 解题报告的更多相关文章

  1. 【洛谷P1939】 矩阵加速模板

    https://www.luogu.org/problemnew/show/P1939 矩阵快速幂 斐波那契数列 首先看一下斐波那契数列的矩阵快速幂求法: 有一个矩阵1*2的矩阵|f[n-2],f[n ...

  2. 洛谷 P2323 [HNOI2006]公路修建问题 解题报告

    P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...

  3. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  4. 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告

    P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...

  5. 洛谷 P1377 [TJOI2011]树的序 解题报告

    P1377 [TJOI2011]树的序 题目描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值\(k\),则变为只有一个结点的二叉查找树,此结点的键值即为\(k ...

  6. 洛谷 P3299 [SDOI2013]保护出题人 解题报告

    P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...

  7. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  8. 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告

    P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...

  9. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  10. 洛谷 画栅栏Painting the Fence 解题报告

    P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...

随机推荐

  1. Web APi 入门例子

    http://www.cnblogs.com/guyun/p/4589115.html#what

  2. 3. 第一个程序Hello, World!

    第一个接口 HelloWorld 本项目所有代码均可在github上下载. 1. 编辑config.py # 基础配置类 import os class Config(object): ROOT = ...

  3. Netty源码分析第3章(客户端接入流程)---->第2节: 处理接入事件之handle的创建

    Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端 ...

  4. 快速部署 Kubeadm 1.13 集群(ETCD)

    软件环境清单 kubeadm.x86_64  Version :1.13.1-0 kubelet.x86_64 Version : 1.13-1-0 kubectl.x86_64 Version : ...

  5. The Art of Multiprocessor Programming读书笔记 (更新至第3章)

    这份笔记是我2013年下半年以来读“The Art of Multiprocessor Programming”这本书的读书笔记.目前有关共享内存并发同步相关的书籍并不多,但是学术文献却不少,跨越的时 ...

  6. 记一次centos6升级salt-minion启动失败的问题

    记一次centos6升级salt-minion启动失败的问题 作者:耀耀 blog:https://www.liuyao.me 一.起因 升级Salt-minion后 使用/etc/init.d/sa ...

  7. iOS静默推送(Silent Remote Notifications)

    此功能是iOS7新增加的功能,允许应用收到通知后在后台(background)状态下运行一段代码,可用于从服务器获取内容更新. 普通推送:收到推送后(有文字有声音),点开通知,进入APP后,才执行-- ...

  8. 分享一个查找linux命令的网站

    http://man.linuxde.net/ 不用每次都找度娘浪费时间了    

  9. 图文转换NABCD

    作为图文转化还是有很多优点的,在这里我就分析一下它的方便快捷 Need:有些非电子版的文字不方便我们编辑,图文转换可以轻而易举达到目的. Approach:现在技术手段应该还有点难度,应该可以换个方法 ...

  10. github基础操作

    1.最简单实用的操作 更新远程仓库 git status git add . git commit -m "add" git push #git push -u origin ma ...