【BZOJ2655】Calc(拉格朗日插值,动态规划)
【BZOJ2655】Calc(多项式插值,动态规划)
题面
题解
考虑如何\(dp\)
设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案。
\(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\)
即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可。
时间复杂度\(O(An)\)。
碰到这种东西我们直接假装它是一个若干次的多项式。
先假设是个\(n\)次多项式,发现不对,
再试试\(2n\)次多项式,恩,很对,
那么直接拉格朗日插值就好了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 505
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A,n,m,MOD,f[MAX][MAX<<1];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int Calc(int x)
{
if(x<=m)return f[n][x];
int tmp=1,ret=0,bs=(n&1)?MOD-1:1;
for(int i=1;i<=m;++i)tmp=1ll*tmp*(x-i)%MOD;
for(int i=1;i<=m;++i)tmp=1ll*tmp*fpow(i,MOD-2)%MOD;
for(int i=0;i<=m;++i,bs=MOD-bs)
{
ret=(ret+1ll*bs*f[n][i]%MOD*tmp%MOD)%MOD;
tmp=1ll*tmp*(x-i)%MOD*fpow(x-i-1,MOD-2)%MOD;
tmp=1ll*tmp*(m-i)%MOD*fpow(i+1,MOD-2)%MOD;
}
return ret;
}
int main()
{
A=read();n=read();MOD=read();
m=min(n+n,A);f[0][0]=1;
for(int j=1;j<=m;f[0][j]=1,++j)
for(int i=1;i<=n;++i)
f[i][j]=(f[i][j-1]+1ll*f[i-1][j-1]*i%MOD*j%MOD)%MOD;
printf("%d\n",Calc(A));
return 0;
}
【BZOJ2655】Calc(拉格朗日插值,动态规划)的更多相关文章
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- [BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 428 Solved: 246[Submit][Status][Discuss] ...
- bzoj 2566 calc 拉格朗日插值
calc Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 377 Solved: 226[Submit][Status][Discuss] Descr ...
- bzoj 2655 calc——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ2655 calc(动态规划+拉格朗日插值法)
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...
随机推荐
- 如何配置pycaffe
首先,使用cmake配置.生成caffe的vs2015工程时,设定生成python接口,即BUILD项->BUILD_python.BUILD_python_layer,注意使用CMake生成V ...
- 统计学习方法c++实现之七 提升方法--AdaBoost
提升方法--AdaBoost 前言 AdaBoost是最经典的提升方法,所谓的提升方法就是一系列弱分类器(分类效果只比随机预测好一点)经过组合提升最后的预测效果.而AdaBoost提升方法是在每次训练 ...
- [Unity] unity5.3 assetbundle打包及加载
Unity5.3更新了assetbundle的打包和加载api,下面简单介绍使用方法及示例代码. 在Unity中选中一个prefab查看Inspector窗口,有两个位置可以进行assetbundle ...
- Unity消息简易框架 Advanced C# messenger
Unity消息简易框架 Advanced C# messenger Unity C# 消息机制 [转载 雨凇MOMO博客] https://www.xuanyusong.com/archives/2 ...
- Siki_Unity_3-6_UI框架 (基于UGUI)
Unity 3-6 UI框架 (基于UGUI) 任务1&2&3&4:介绍 && 创建工程 UI框架: 管理场景中所有UI面板 控制面板之间的跳转 如果没有UI框 ...
- jmeter阶梯加压线程组
添加阶梯加压线程组路径为鼠标捕获测试计划后,点击鼠标右键->添加->Threads(Users)->jp@gc – Stepping Thread Group(deprecated) ...
- Netty 粘包/拆包应用案例及解决方案分析
熟悉TCP变成的可以知道,无论是客户端还是服务端,但我们读取或者发送消息的时候,都需要考虑TCP底层粘包/拆包机制,下面我们先看一下TCP 粘包/拆包和基础知识,然后模拟一个没有考虑TCP粘包/拆包导 ...
- 木马分析出现python语言,360的安全人员不禁感叹还有这种操作?
几年前,敲诈者木马还是一个默默无闻的木马种类.然而,由于其极强的破坏力和直接且丰厚的财富回报,敲诈者木马这几年已经一跃成为曝光率最高的木马类型——甚至超越了盗号木马.远控木马.网购木马这传统三强.与此 ...
- Ubuntu下LimeSDR Mini使用说明
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 LimeSDR链接:https://item.taobao.com/item.htm?spm=a230r.1 ...
- 无法连接 Plugins Market 失效的日子
一.问题背景 不知道是什么原因,我的 Intellij 连接不上 Plugins Market,这时候我需要使用 @Data 注解来自动生成 Getter.Setter 方法.在添加了相应的依赖之后, ...