【BZOJ2655】Calc(多项式插值,动态规划)

题面

BZOJ

题解

考虑如何\(dp\)

设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案。

\(f[i][j]=f[i-1][j-1]*i*j+f[i][j-1]\)

即不考虑选择\(j\),以及当前选择\(j\),那么枚举是哪个数,转移即可。

时间复杂度\(O(An)\)。

碰到这种东西我们直接假装它是一个若干次的多项式。

先假设是个\(n\)次多项式,发现不对,

再试试\(2n\)次多项式,恩,很对,

那么直接拉格朗日插值就好了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 505
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int A,n,m,MOD,f[MAX][MAX<<1];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int Calc(int x)
{
if(x<=m)return f[n][x];
int tmp=1,ret=0,bs=(n&1)?MOD-1:1;
for(int i=1;i<=m;++i)tmp=1ll*tmp*(x-i)%MOD;
for(int i=1;i<=m;++i)tmp=1ll*tmp*fpow(i,MOD-2)%MOD;
for(int i=0;i<=m;++i,bs=MOD-bs)
{
ret=(ret+1ll*bs*f[n][i]%MOD*tmp%MOD)%MOD;
tmp=1ll*tmp*(x-i)%MOD*fpow(x-i-1,MOD-2)%MOD;
tmp=1ll*tmp*(m-i)%MOD*fpow(i+1,MOD-2)%MOD;
}
return ret;
}
int main()
{
A=read();n=read();MOD=read();
m=min(n+n,A);f[0][0]=1;
for(int j=1;j<=m;f[0][j]=1,++j)
for(int i=1;i<=n;++i)
f[i][j]=(f[i][j-1]+1ll*f[i-1][j-1]*i%MOD*j%MOD)%MOD;
printf("%d\n",Calc(A));
return 0;
}

【BZOJ2655】Calc(拉格朗日插值,动态规划)的更多相关文章

  1. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  2. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  3. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  4. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  5. [BZOJ2655]calc(拉格朗日插值法+DP)

    2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] ...

  6. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

  7. bzoj 2655 calc——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...

  8. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  9. BZOJ2655 calc(动态规划+拉格朗日插值法)

    考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考 ...

随机推荐

  1. 提高JetBrains软件的性能

    在Java开发中,我用的开发工具是Idea,它是JetBrains公司旗下的产品. 电脑内存较大,但是Idea加载的慢,我们可以通过 \bin 下的 idea64.exe.vmoptions 和 id ...

  2. 解决k8s出现pod服务一直处于ContainerCreating状态的问题的过程

    参考于: https://blog.csdn.net/learner198461/article/details/78036854 https://liyang.pro/solve-k8s-pod-c ...

  3. ofo容器pass架构分享

    一.我们先要了解一下,为什么企业需要一个paas平台?或者可以说paas到底能做什么? 1.1 我们先来了解一下paas到底是什么? PaaS是Platform-as-a-Service的缩写,意思是 ...

  4. g2蚂蚁数据可视化折线图,点位坐标label 图形文本设置

    应用g2可视化插件画了个粉丝分析图 要求显示如图所见的节点参数,查看文档蚂蚁图形文本设置,得知需要引入如下代码: chart.point().position('update*praises').la ...

  5. react-native ListView 性能问题

    常见性能问题已经有很多答案,这里要说的是使用ListView时注意的地方,    ListView的容器需要设定一个固定高度, 不然ListView中的item过多,会把整体页面撑开,设置的 remo ...

  6. Scrum Meeting 11.1

    成员 今日任务 明日计划 用时 徐越 学习利用servlet上传下载文件 代码迁移 4h 赵庶宏 数据库的连接及代码学习 数据库连接 2h 武鑫 设计界面;尝试写一些初步的代码,独立完成一些简单界面 ...

  7. C++:new&delete

    一.new的浅析 在C++中,new主要由三种形式:new operator.operator new和placement new • new operator new operator即一些C++书 ...

  8. magic mouse 2 使用,移动速度问题,安装问题

    一.安装问题 首先确保你的OSX里面没有安装USB Overdrive.prefPane这个软件,就是“瑞士军刀”.这个软件会让你的magic mouse 2 连接上Mac后,Mac无限死机重启,有时 ...

  9. 第二阶段Sprint2

    昨天:讨论冲刺阶段,目标,任务认领 今天:查看资料,开始视频录制部分的代码实现 遇到的问题:不能暂停后继续录制,只能直接结束

  10. 四则运算《《《《SQL出题

    设计思路: 这次要用数据库存储题目,我想到的是用SQL server数据库,用dataGridView控件读取数据. 具体实现: DBCon.cs 1 using System; 2 using Sy ...