【bzoj2301】 HAOI2011—Problem b
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接)
题意
给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i=a}^{b}\sum_{j=c}^{d} [gcd(i,j)=k]}$$
Solution
莫比乌斯反演,就是一堆公式推啊推。
运用容斥,那么答案就变成了:$${\sum_{i=1}^{b}\sum_{j=1}^{d} [gcd(i,j)=k]-\sum_{i=1}^{b}\sum_{j=1}^{c-1} [gcd(i,j)=k]-\sum_{i=1}^{a-1}\sum_{j=1}^{d} [gcd(i,j)=k]+\sum_{i=1}^{a-1}\sum_{j=1}^{c-1} [gcd(i,j)=k]}$$
这${4}$项都长得差不多,我们考虑其一般情况。
\begin{aligned} & \sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=k] \\ =&\sum_{i=1}^{\lfloor{n/k}\rfloor}\sum_{j=1}^{\lfloor{m/k}\rfloor} [gcd(i,j)=1] \\ =&\sum_{t=1}^{n}μ(t)\lfloor\frac{n}{kt}\rfloor\lfloor\frac{m}{kt}\rfloor \end{aligned}
于是我们就可以${O(n)}$的计算这个东西了,然而还不够。考虑到${\lfloor\frac{n}{kt}\rfloor}$和${\lfloor\frac{m}{kt}\rfloor}$的取值各有${2\sqrt{n},2\sqrt{m}}$种,所以我们对${μ(t)}$分段求前缀和。代码很好写。
细节
LL
代码
// bzoj2301
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
int p[maxn],vis[maxn],mu[maxn],s[maxn],a,b,c,d,K; LL solve(int n,int m) {
n/=K,m/=K;
if (n>m) swap(n,m);
LL res=0;
for (int i=1,j;i<=n;i=j+1) { //区间[i,j]
j=min(n/(n/i),m/(m/i));
res+=(LL)(n/i)*(m/i)*(s[j]-s[i-1]);
}
return res;
}
int main() {
int T;scanf("%d",&T);
s[1]=mu[1]=1;
for (int i=2;i<maxn;i++) {
if (!vis[i]) p[++p[0]]=i,mu[i]=-1;
for (int j=1;j<=p[0] && i*p[j]<maxn;j++) {
vis[i*p[j]]=1;
if (i%p[j]==0) {mu[i*p[j]]=0;break;}
else mu[i*p[j]]=-mu[i];
}
s[i]=s[i-1]+mu[i];
}
while (T--) {
scanf("%d%d%d%d%d",&a,&b,&c,&d,&K);
printf("%lld\n",solve(b,d)-solve(b,c-1)-solve(a-1,d)+solve(a-1,c-1));
}
return 0;
}
【bzoj2301】 HAOI2011—Problem b的更多相关文章
- 【bzoj2301】[HAOI2011]Problem b 莫比乌斯反演
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- 【BZOJ2302】[HAOI2011]Problem C(动态规划)
[BZOJ2302][HAOI2011]Problem C(动态规划) 题面 BZOJ 洛谷 题解 首先如果\(m=0\)即没有特殊限制的话,那么就和这道题目基本上是一样的. 然而这题也有属于这题的性 ...
- 【BZOJ2298】[HAOI2011]problem a DP
[BZOJ2298][HAOI2011]problem a Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相 ...
- 【BZOJ2298】[HAOI2011]problem a
题解: 虽然也是个可以过得做法...但又没有挖掘到最简单的做法... 正解是发现这个东西等价于求不相交区间个数 直接按照右端点排序,然后贪心就可以O(n)过了 而我的做法是按照a排序(其实我是在模拟这 ...
- 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 【Luogu4137】Rmq Problem/mex (莫队)
[Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ4999】This Problem Is Too Simple!(线段树)
[BZOJ4999]This Problem Is Too Simple!(线段树) 题面 BZOJ 题解 对于每个值,维护一棵线段树就好啦 动态开点,否则空间开不下 剩下的就是很简单的问题啦 当然了 ...
- 【BZOJ2300】[HAOI2011]防线修建 set维护凸包
[BZOJ2300][HAOI2011]防线修建 Description 近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了.可 ...
随机推荐
- 算法工程师进化-SQL
1 引言 SQL操作往往是程序员必备的技能,对于算法工程师而言,熟练掌握SQL操作则更为重要.本文以<SQL语句执行顺序>作为学习资料,总结SQL的理论部分. 2 SQL查询语句的执行顺序 ...
- webpack2.0+ vue2.0
一 webpack 2.0 及用到的插件安装(默认已经有node环境) 1. package.json文件 (插件安装及插件的功能不详解) { "private": true, & ...
- 从零开始的Python学习Episode 21——socket基础
socket基础 网络通信要素: A:IP地址 (1) 用来标识网络上一台独立的主机 (2) IP地址 = 网络地址 + 主机地址(网络号:用于识别主机所在的网络/网段.主机号:用于识别该网络中的 ...
- Linux 系统安全检查(shell)
脚本内容: #!/bin/bash echo " (__)" echo " (oo)" echo " /------\/ " echo &q ...
- idea最常使用的快捷键
撤销 反撤销 : Ctrl+Z / Ctrl+Shift+Z 删除一行 : Ctrl+Y 跳到实现类 : Ctrl+Alt+B 重命名文件: shift+F6 控制台放大缩小: ctrl+shif ...
- 互评Beta版本——可以低头,但没必要——取件帮
基于NABCD评论作品,及改进建议 1. 根据(不限于)NABCD评论作品的选题 (1)N(Need,需求) 取件帮是一款有偿互助取件的微信小程序,很大程度上解决了学生因为距离.时间等原因无法取快递的 ...
- 预备作业02 : 体会做中学(Learning By Doing)
1.你有什么技能比大多人(超过班级90%以上)更好? 我认为我是一个比较爱摄影和绘画的人,虽然说说不上技术精湛,但还是能拿出手的. 2.针对这个技能的获取你有什么成功的经验? 接触摄影和绘画都是因为喜 ...
- The last time the sprint(最后一个冲刺)
经过一两个月的努力,我们终于是做出来了一点东西,从一开始接触这个项目开始,从完全不知道怎么去入手到跌跌碰碰,再到现在可以拿出来一点东西给别人看,我觉得很开心,或许我的这个成品在别人眼中并不算是什么,但 ...
- 【CSAPP笔记】11. 存储器层次结构
在没有专门研究存储器系统之前,我们依赖的存储器模型是一个很简单的概念,也就是把它看成一个线性数组,CPU 能在一个常数时间内访问任何一个存储器位置.虽然在研究别的问题时,这是一个有效的模型,但是它不能 ...
- Java编写的电梯模拟系统《结对作业》
作业代码:https://coding.net/u/liyi175/p/Dianti/git 伙伴成员:李伊 http://home.cnblogs.com/u/Yililove/ 对于这次作业,我刚 ...