CF993E Nikita and Order Statistics 【fft】
题目链接
题解
我们记小于\(x\)的位置为\(1\),否则为\(0\)
区间由端点决定,转为两点前缀和相减
我们统计出每一种前缀和个数,记为\(A[i]\)表示值为\(i\)的位置出现的次数
那么对于\(k > 0\)有
\]
令
\]
那么有
\]
就成了卷积的形式
第\(n + k\)项系数就是\(ans_k \qquad k > 0\)
对于\(k = 0\),可以直接统计,也可以减去卷积中重复的部分
首先减去空串的个数\(n + 1\),然后再除以\(2\)【因为当\(x\)和\(y\)相等,大小顺序就可以颠倒了】
最后求得的就是\(k = 0\)的答案
复杂度\(O(nlogn)\)
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 800005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
struct E{
double a,b;
E(){}
E(double x,double y):a(x),b(y) {}
E(int x,int y):a(x),b(y) {}
inline E operator =(const int& b){
this->a = b; this->b = 0;
return *this;
}
inline E operator =(const double& b){
this->a = b; this->b = 0;
return *this;
}
inline E operator /=(const double& b){
this->a /= b; this->b /= b;
return *this;
}
};
inline E operator *(const E& a,const E& b){
return E(a.a * b.a - a.b * b.b,a.a * b.b + a.b * b.a);
}
inline E operator *=(E& a,const E& b){
return a = E(a.a * b.a - a.b * b.b,a.a * b.b + a.b * b.a);
}
inline E operator +(const E& a,const E& b){
return E(a.a + b.a,a.b + b.b);
}
inline E operator -(const E& a,const E& b){
return E(a.a - b.a,a.b - b.b);
}
const double pi = acos(-1);
int R[maxn];
void fft(E* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
E wn(cos(pi / i),f * sin(pi / i));
for (int j = 0; j < n; j += (i << 1)){
E w(1,0),x,y;
for (int k = 0; k < i; k++,w = w * wn){
x = a[j + k],y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
if (f == -1) for (int i = 0; i < n; i++) a[i] /= n;
}
E A[maxn],B[maxn];
int cnt[maxn],N,x,a[maxn];
int main(){
N = read(); x = read();
cnt[0]++;
REP(i,N) cnt[a[i] = a[i - 1] + (read() < x ? 1 : 0)]++;
for (int i = 0; i <= N; i++) A[i] = cnt[i],B[i] = cnt[N - i];
int n = 1,L = 0;
while (n <= (N << 1)) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
fft(A,n,1); fft(B,n,1);
for (int i = 0; i < n; i++) A[i] *= B[i];
fft(A,n,-1);
A[N].a -= N + 1; A[N].a /= 2;
for (int i = 0; i <= N; i++)
printf("%.0lf ",floor(A[N + i].a + 0.3));
return 0;
}
CF993E Nikita and Order Statistics 【fft】的更多相关文章
- CF993E:Nikita and Order Statistics(FFT)
Description 给你一个数组 $a_{1 \sim n}$,对于 $k = 0 \sim n$,求出有多少个数组上的区间满足:区间内恰好有 $k$ 个数比 $x$ 小.$x$ 为一个给定的数. ...
- CF993E Nikita and Order Statistics
小于x的赋值为1,否则为0 区间等于k的个数 求0~n连续的n+1个k? N<=1e5? FFT! 考虑卷积建模:用下标相加实现转移到位,数值相乘类比乘法原理! 法一: 分治,然后FFT没了 法 ...
- CF993E Nikita and Order Statistics 多项式卷积 快速傅里叶变换
题意: 给你一个数组a1~an,对于k=0~n,求出有多少个数组上的区间满足:区间内恰好有k个数比x小.x为一个给定的数.n<=10^5.值域没有意义. 分析: 大神们都说这道题是一个套路题,真 ...
- 【BZOJ3527】【FFT】力
[问题描述]给出n个数qi,给出Fj的定义如下:令Ei=Fi/qi.试求Ei.[输入格式]输入文件force.in包含一个整数n,接下来n行每行输入一个数,第i行表示qi.[输出格式]输出文件forc ...
- 【清橙A1084】【FFT】快速傅里叶变换
问题描述 离散傅立叶变换在信号处理中扮演者重要的角色.利用傅立叶变换,可以实现信号在时域和频域之间的转换. 对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅 ...
- 【HDU1402】【FFT】A * B Problem Plus
Problem Description Calculate A * B. Input Each line will contain two integers A and B. Process to e ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 【FFT】HDU4609-3 idiots
..退化为一天两题了,药丸.. [题目大意] 给出n根木棍的长度,求从其中取出3根能组成三角形的概率. [思路] 然后枚举求前缀和,枚举最长边.假设最长边为l,先求出所有两边之和大于它的情况数.然后减 ...
- 【FFT】BZOJ2179- FFT快速傅立叶
[题目大意] 给出n位十进制a和b,求a*b. [思路] FFT.感觉弄起来比较麻烦,不如直接背板子. 注意一下MAXN的取值,我一开始非常随意地就写了60000*2+50,其实n是要扩展到最接近的2 ...
随机推荐
- CocoaPods pod install的时候报错:invalid byte sequence in UTF-8 (ArgumentError)解决办法
CocoaPods pod install的时候报错:invalid byte sequence in UTF-8 (ArgumentError)解决办法: 基本可以确定是Podfile中的内容编码有 ...
- T&F 圆桌:儿童智能玩具离我们还有多远?
“女人和孩子的钱是最好挣的”,这句经典的名句被很多商家奉为信条,这在现实生活中也得到了很好的印证. 各种步行街.商业街.Mall 干的做多的事情就是:围绕着女人和孩子打造创造消费点.步行街.商业街上各 ...
- 20172319 2018.04.01-04.11 《Java程序设计》第5周学习总结
20172319 2018.04.01-04.11 <Java程序设计>第5周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错 ...
- Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks dp+矩阵加速
题目链接: http://codeforces.com/problemset/problem/621/E E. Wet Shark and Blocks time limit per test2 se ...
- java拓荒者
因为是初学者 最近在看那个<java从入门到精通 韩顺平>的视频 觉得好不错 虽然视频的分辨率强差人意 但仍可接受 学知识嘛 用我们广东话说 :“鬼叫你穷,顶硬上” 韩老师的声音较好 课堂 ...
- 作业6 团队项目之需求 (NABCD模型)
N A B C D模型分析 WorkGroup:NewApps 组员:欧其锋(201306114305 http://www.cnblogs.com/ouqifeng/) 吕日荣(20130611 ...
- BETA-1
前言 我们居然又冲刺了·一 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 发现之前的代码居然已经有了陌生感,默默地复习一遍并做注释 阅读关于基于视频的车 ...
- teamcity和jmeter结合进行接口自动化测试
(1)从teamcity官网下载jmeter插件:https://teamcity.jetbrains.com/repository/download/TeamCityPluginsByJetBrai ...
- VNC Server (Ubuntu 16.04.3 GNOME)
1. 安装VNC服务 sudo apt-get install vnc4server -y 2. 启动VNC服务 vncserver :1 3. 此时客户端连上后你会发现灰屏,原因出在~/.vnc/x ...
- [知乎]SSD的延迟
以及一些SSD的性能数据