原贴地址:http://fuliang.iteye.com/blog/1482002 

其它参考资料:http://en.wikipedia.org/wiki/Stochastic_gradient_descent

 

1. 基于梯度下降的学习 
      对于一个简单的机器学习算法,每一个样本包含了一个(x,y)对,其中一个输入x和一个数值输出y。我们考虑损失函数,它描述了预测值和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数的到的预测结果。

我们的目标是寻找这样的函数,能够在训练集中最小化平均损失函数 :

由于我们不知道数据的真实分布,所以我们通常使用 

来代替 

经验风险用来衡量训练集合的效果。期望风险E(f)描述了泛化(generation)的效果,预测未知样例的能力。 
如果函数族F进行足够的限制(sufficiently restrictive ),统计机器学习理论使用经验风险来代替期望风险。 
1.1 梯度下降 
我们经常使用梯度下降(GD)的方式来最小化期望风险,每一次迭代,基于更新权重w: 
,为学习率,如果选择恰当,初始值选择合适,这个算法能够满足线性的收敛。也就是:,其中表示残余误差(residual error)。 
基于二阶梯度的比较出名的算法是牛顿法,牛顿法可以达到二次函数的收敛。如果代价函数是二次的,矩阵是确定的,那么这个算法可以一次迭代达到最优值。如果足够平滑的话,。但是计算需要计算偏导hession矩阵,对于高维,时间和空间消耗都是非常大的,所以通常采用近似的算法,来避免直接计算hession矩阵,比如BFGS,L-BFGS。

1.2 随机梯度下降 
SGD是一个重要的简化,每一次迭代中,梯度的估计并不是精确的计算,而是基于随即选取的一个样例

随机过程
依赖于每次迭代时随即选择的样例,尽管这个简化的过程引入了一些噪音,但是我们希望他的表现能够和GD的方式一样。 
随机算法不需要记录哪些样例已经在前面的迭代过程中被访问过,有时候随机梯度下降能够直接优化期望风险,因为样例可能是随机从真正的分布中选取的。 
随机梯度算法的收敛性已经在随机近似算法的论文所讨论。收敛性要满足: 
并且
二阶随机梯度下降: 

这种方法并没有减少噪音,也不会对计算有太大改进。 
1.3 随即梯度的一些例子 
下面列了一些比较经典的机器学习算法的随机梯度, 

 

使用SGD(Stochastic Gradient Descent)进行大规模机器学习的更多相关文章

  1. 逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习

    Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个 ...

  2. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  3. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  4. Stochastic Gradient Descent

    一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...

  5. 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)

    https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...

  6. 基于baseline和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...

  7. Stochastic Gradient Descent 随机梯度下降法-R实现

    随机梯度下降法  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...

  8. Stochastic Gradient Descent收敛判断及收敛速度的控制

    要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...

  9. 基于baseline、svd和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...

随机推荐

  1. hadoop集群的搭建(分布式安装)

    集群 计算机集群是一种计算机系统,他通过一组松散集成的计算机软件和硬件连接起来高度紧密地协同完成计算工作. 集群系统中的单个计算机通常称为节点,通常通过局域网连接. 集群技术的特点: 1.通过多台计算 ...

  2. 收集Nginx的json格式日志(五)

    一.配置nginx [root@linux-node1 ~]# vim /etc/nginx/nginx.conf #修改日志格式为json格式,并创建一个nginxweb的网站目录 log_form ...

  3. 第一个iOS程序:Hello iOS

    今天我们来创建第一个iOS程序:Hello iOS!不需要写任何代码就能实现:

  4. 【定时任务】Spring Boot 中如何使用 Quartz

    这篇文章将介绍如何在Spring Boot 中使用Quartz. 一.首先在 pom.xml 中添加 Quartz 依赖. <!-- quartz依赖 --> <dependency ...

  5. load Properties

    /* */ public static final Properties loadProperties(String propertyFileRelativePath) /* */ { /* 67 * ...

  6. [leetcode sort]147. Insertion Sort List

    Sort a linked list using insertion sort. 利用插入排序对一个链表进行排序 思路和数组中的插入排序一样,不过每次都要从链表头部找一个合适的位置,而不是像数组一样可 ...

  7. golang实现base64编解码

    golang中base64的编码和解码可以用内置库encoding/base64 package main import ( "encoding/base64" "fmt ...

  8. POJ 1469 COURSES 二分图最大匹配 二分图

    http://poj.org/problem?id=1469 这道题我绝壁写过但是以前没有mark过二分图最大匹配的代码mark一下. 匈牙利 O(mn) #include<cstdio> ...

  9. UOJ 310 黎明前的巧克力(FWT)

    [题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价 ...

  10. Elasticsearch快速入门案例

    写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Ela ...