使用SGD(Stochastic Gradient Descent)进行大规模机器学习
原贴地址:http://fuliang.iteye.com/blog/1482002
其它参考资料:http://en.wikipedia.org/wiki/Stochastic_gradient_descent
1. 基于梯度下降的学习
对于一个简单的机器学习算法,每一个样本包含了一个(x,y)对,其中一个输入x和一个数值输出y。我们考虑损失函数
,它描述了预测值
和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数
的到的预测结果。
我们的目标是寻找这样的函数
,能够在训练集中最小化平均损失函数 :
由于我们不知道数据的真实分布,所以我们通常使用
来代替
经验风险
用来衡量训练集合的效果。期望风险E(f)描述了泛化(generation)的效果,预测未知样例的能力。
如果函数族F进行足够的限制(sufficiently restrictive ),统计机器学习理论使用经验风险来代替期望风险。
1.1 梯度下降
我们经常使用梯度下降(GD)的方式来最小化期望风险,每一次迭代,基于
更新权重w:
,
为学习率,如果选择恰当,初始值选择合适,这个算法能够满足线性的收敛。也就是:
,其中
表示残余误差(residual error)。
基于二阶梯度的比较出名的算法是牛顿法,牛顿法可以达到二次函数的收敛。如果代价函数是二次的,矩阵
是确定的,那么这个算法可以一次迭代达到最优值。如果足够平滑的话,
。但是计算需要计算偏导hession矩阵,对于高维,时间和空间消耗都是非常大的,所以通常采用近似的算法,来避免直接计算hession矩阵,比如BFGS,L-BFGS。
1.2 随机梯度下降
SGD是一个重要的简化,每一次迭代中,梯度的估计并不是精确的计算
,而是基于随即选取的一个样例
:
随机过程
依赖于每次迭代时随即选择的样例,尽管这个简化的过程引入了一些噪音,但是我们希望他的表现能够和GD的方式一样。
随机算法不需要记录哪些样例已经在前面的迭代过程中被访问过,有时候随机梯度下降能够直接优化期望风险,因为样例可能是随机从真正的分布中选取的。
随机梯度算法的收敛性已经在随机近似算法的论文所讨论。收敛性要满足:
并且
二阶随机梯度下降:
这种方法并没有减少噪音,也不会对计算
有太大改进。
1.3 随即梯度的一些例子
下面列了一些比较经典的机器学习算法的随机梯度, 
使用SGD(Stochastic Gradient Descent)进行大规模机器学习的更多相关文章
- 逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习
Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个 ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?
FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...
- Stochastic Gradient Descent
一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- 基于baseline和stochastic gradient descent的个性化推荐系统
文章主要介绍的是koren 08年发的论文[1], 2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...
- Stochastic Gradient Descent 随机梯度下降法-R实现
随机梯度下降法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...
- Stochastic Gradient Descent收敛判断及收敛速度的控制
要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...
- 基于baseline、svd和stochastic gradient descent的个性化推荐系统
文章主要介绍的是koren 08年发的论文[1], 2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...
随机推荐
- 003 JTA的使用与理解
一:认识JTA 1.介绍 事物的ACID. 事务是计算机应用中不可或缺的组件模型,它保证了用户操作的原子性 ( Atomicity ).一致性 ( Consistency ).隔离性 ( Isolat ...
- 重装Win7后找回Ubuntu启动项并在Ubuntu中修复引导
1. 输入$ sudo fdisk -l 查看磁盘信息,选择Linux的磁盘,如sda10 2. 输入$ sudo -i(此步用于得到root权限,方便以下操作.) 3. 输入$ mkdir /med ...
- .NET之类型转换
说起类型转换大家很容易的就会联想到将int类型转换成float类型或者是将double类型转转成int类型之类的转换.当然这可能是大多数人最先接触到的转换方式,也是最简单的转换方式.所谓转换就是从现有 ...
- [leetcode tree]103. Binary Tree Zigzag Level Order Traversal
Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...
- Swift2.0语言教程之下标脚本
Swift2.0语言教程之下标脚本 下标脚本 下标脚本是访问对象.集合或者序列的快速方式.开发者不需要调用实例特定的赋值和访问方法,就可以直接访问所需要的数值.例如在数组中,可以直接使用下标去访问或者 ...
- cloudstack模板
玩cloudstack的人都应该玩过模板这个功能,这里还是比较有意思的,我们底层连接vcenter 创建vm采用模板 实际这里的磁盘方案,并不是给系统重新分配的磁盘大小而是又新挂上了一块磁盘,新磁盘的 ...
- ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)
登录服务器,使用root用户连接mysql时出现错误提示: $ bin/mysql -uroot -p Enter password: ERROR (HY000): Can't connect to ...
- Pipeline和FeatureUnion
注:本文是人工智能研究网的学习笔记 Pipeline:chaining(链接)estimators Pipeline可以用于把多个estimators级联合成一个estimator.这么做的原因是考虑 ...
- CSS HTML 常用属性备忘录
学习软件设计有一年多了,明年五月就要毕业了.回头看看发现自己其实挺差劲的. 最近开通了博客所以就整理了一下笔记,在这里发布一下自己以前学习css时总是记不住去翻书又很常用的属性,都是一些很基础的. 大 ...
- [Agc002E]Candy Piles
[Agc002E]Candy Piles 题目大意 有\(n\)个数,两人轮流操作,可以做以下操作之一: 删掉一个最大的数 将所有数-1 最后取没的人输,问先手是否必胜? 试题分析 直接决策不知道选哪 ...