原贴地址:http://fuliang.iteye.com/blog/1482002 

其它参考资料:http://en.wikipedia.org/wiki/Stochastic_gradient_descent

 

1. 基于梯度下降的学习 
      对于一个简单的机器学习算法,每一个样本包含了一个(x,y)对,其中一个输入x和一个数值输出y。我们考虑损失函数,它描述了预测值和实际值y之间的损失。预测值是我们选择从一函数族F中选择一个以w为参数的函数的到的预测结果。

我们的目标是寻找这样的函数,能够在训练集中最小化平均损失函数 :

由于我们不知道数据的真实分布,所以我们通常使用 

来代替 

经验风险用来衡量训练集合的效果。期望风险E(f)描述了泛化(generation)的效果,预测未知样例的能力。 
如果函数族F进行足够的限制(sufficiently restrictive ),统计机器学习理论使用经验风险来代替期望风险。 
1.1 梯度下降 
我们经常使用梯度下降(GD)的方式来最小化期望风险,每一次迭代,基于更新权重w: 
,为学习率,如果选择恰当,初始值选择合适,这个算法能够满足线性的收敛。也就是:,其中表示残余误差(residual error)。 
基于二阶梯度的比较出名的算法是牛顿法,牛顿法可以达到二次函数的收敛。如果代价函数是二次的,矩阵是确定的,那么这个算法可以一次迭代达到最优值。如果足够平滑的话,。但是计算需要计算偏导hession矩阵,对于高维,时间和空间消耗都是非常大的,所以通常采用近似的算法,来避免直接计算hession矩阵,比如BFGS,L-BFGS。

1.2 随机梯度下降 
SGD是一个重要的简化,每一次迭代中,梯度的估计并不是精确的计算,而是基于随即选取的一个样例

随机过程
依赖于每次迭代时随即选择的样例,尽管这个简化的过程引入了一些噪音,但是我们希望他的表现能够和GD的方式一样。 
随机算法不需要记录哪些样例已经在前面的迭代过程中被访问过,有时候随机梯度下降能够直接优化期望风险,因为样例可能是随机从真正的分布中选取的。 
随机梯度算法的收敛性已经在随机近似算法的论文所讨论。收敛性要满足: 
并且
二阶随机梯度下降: 

这种方法并没有减少噪音,也不会对计算有太大改进。 
1.3 随即梯度的一些例子 
下面列了一些比较经典的机器学习算法的随机梯度, 

 

使用SGD(Stochastic Gradient Descent)进行大规模机器学习的更多相关文章

  1. 逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习

    Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个 ...

  2. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  3. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  4. Stochastic Gradient Descent

    一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...

  5. 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)

    https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...

  6. 基于baseline和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...

  7. Stochastic Gradient Descent 随机梯度下降法-R实现

    随机梯度下降法  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...

  8. Stochastic Gradient Descent收敛判断及收敛速度的控制

    要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...

  9. 基于baseline、svd和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...

随机推荐

  1. 004 Hadoop2.x基础知识

    一:大数据应用 1.Cloudera cloudera公司是Hadoop三大发行商之一,其版本为CDH版本,现在最新的版本是CDH5. 网站:http://archive.cloudera.com/c ...

  2. mysql find_in_set函数详解

    Mysql函数FIND_IN_SET()的使用方法 有了FIND_IN_SET这个函数.我们可以设计一个如:一只手机即是智能机,又是Andriod系统的. 比如:有个产品表里有一个type字段,他存储 ...

  3. 2018用IDEA搭建SSM框架(Spring+SpringMVC+Mybatis)

    使用IDEA搭建ssm框架 环境 工具:IDEA 2018.1 jdk版本:jdk1.8.0_171 Maven版本:apache-maven-3.5.3 Tomcat版本:apache-tomcat ...

  4. IBM斥资340亿美元收购红帽

    IBM宣布收购Linux巨头Red Hat,以每股190美元的现金收购其所有已发行股份,总价值约为340亿美元.这一交易是IBM历史上金额最高的一笔收购交易,也成为其在营收持续下滑的压力下,布局云计算 ...

  5. 机器学习之路:python k均值聚类 KMeans 手写数字

    python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ...

  6. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  7. gulp编译出现Cannot find module 'internal/util/types'——node环境的变更

    一心埋头敲代码,再回首,nodejs都蹦跶到8.9版本了,为了跟上时代,妥妥的赶紧升级啊,升级的结果...Cannot find module 'internal/util/types'...   于 ...

  8. 不同的activity使用bundle对象传值给广播接收器

    解决了一下午的问题,广播机制传值,在一个activity中发送广播给广播接收器,使用的是同一个action 在另一个activity中如果也发送广播给同一个广播接收器,使用相同的action,会导致后 ...

  9. WINDOWS WPA性能分析

    http://r12f.com/posts/introduction-to-wpa-1-why-it-is-slow/ http://www.freebuf.com/column/138862.htm ...

  10. JEECG第二期深入使用培训(报名截止2014-06-21)

    JEECG第二期深入使用培训(报名截止2014-06-21) JEECG深度研究-交流碰撞火花,你学会的不不过JEECG,很多其它的是软件架构思想 http://www.jeecg.org/forum ...