Java并发编程原理与实战十六:AQS
一、概述
谈到并发,不得不谈ReentrantLock;而谈到ReentrantLock,不得不谈AbstractQueuedSynchronized(AQS)!
类如其名,抽象的队列式的同步器,AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的ReentrantLock/Semaphore/CountDownLatch...。
二、框架
它维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。这里volatile是核心关键词,具体volatile的语义,在此不述。state的访问方式有三种:
- getState()
- setState()
- compareAndSetState()
AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:
- isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
- tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
- tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
- tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
- tryReleaseShared(int):共享方式。尝试释放资源,成功则返回true,失败则返回false。
以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。
再以CountDownLatch以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。
一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。
三、源码详解
本节开始讲解AQS的源码实现。依照acquire-release、acquireShared-releaseShared的次序来。
3.1 acquire(int)
此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是lock()的语义,当然不仅仅只限于lock()。获取到资源后,线程就可以去执行其临界区代码了。下面是acquire()的源码:
1 public final void acquire(int arg) {
2 if (!tryAcquire(arg) &&
3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4 selfInterrupt();
5 }
函数流程如下:
- tryAcquire()尝试直接去获取资源,如果成功则直接返回;
- addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
- acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
这时单凭这4个抽象的函数来看流程还有点朦胧,不要紧,看完接下来的分析后,你就会明白了。就像《大话西游》里唐僧说的:等你明白了舍生取义的道理,你自然会回来和我唱这首歌的。
3.1.1 tryAcquire(int)
此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。这也正是tryLock()的语义,还是那句话,当然不仅仅只限于tryLock()。如下是tryAcquire()的源码:
1 protected boolean tryAcquire(int arg) {
2 throw new UnsupportedOperationException();
3 }
什么?直接throw异常?说好的功能呢?好吧,还记得概述里讲的AQS只是一个框架,具体资源的获取/释放方式交由自定义同步器去实现吗?就是这里了!!!AQS这里只定义了一个接口,具体资源的获取交由自定义同步器去实现了(通过state的get/set/CAS)!!!至于能不能重入,能不能加塞,那就看具体的自定义同步器怎么去设计了!!!当然,自定义同步器在进行资源访问时要考虑线程安全的影响。
这里之所以没有定义成abstract,是因为独占模式下只用实现tryAcquire-tryRelease,而共享模式下只用实现tryAcquireShared-tryReleaseShared。如果都定义成abstract,那么每个模式也要去实现另一模式下的接口。说到底,Doug Lea还是站在咱们开发者的角度,尽量减少不必要的工作量。
3.1.2 addWaiter(Node)
此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点。还是上源码吧:
1 private Node addWaiter(Node mode) {
2 //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
3 Node node = new Node(Thread.currentThread(), mode);
4
5 //尝试快速方式直接放到队尾。
6 Node pred = tail;
7 if (pred != null) {
8 node.prev = pred;
9 if (compareAndSetTail(pred, node)) {
10 pred.next = node;
11 return node;
12 }
13 }
14
15 //上一步失败则通过enq入队。
16 enq(node);
17 return node;
18 }
不用再说了,直接看注释吧。
3.1.2.1 enq(Node)
此方法用于将node加入队尾。源码如下:
1 private Node enq(final Node node) {
2 //CAS"自旋",直到成功加入队尾
3 for (;;) {
4 Node t = tail;
5 if (t == null) { // 队列为空,创建一个空的标志结点作为head结点,并将tail也指向它。
6 if (compareAndSetHead(new Node()))
7 tail = head;
8 } else {//正常流程,放入队尾
9 node.prev = t;
10 if (compareAndSetTail(t, node)) {
11 t.next = node;
12 return t;
13 }
14 }
15 }
16 }
如果你看过AtomicInteger.getAndIncrement()函数源码,那么相信你一眼便看出这段代码的精华。CAS自旋volatile变量,是一种很经典的用法。还不太了解的,自己去百度一下吧。
3.1.3 acquireQueued(Node, int)
OK,通过tryAcquire()和addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。聪明的你立刻应该能想到该线程下一部该干什么了吧:进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。没错,就是这样!是不是跟医院排队拿号有点相似~~acquireQueued()就是干这件事:在等待队列中排队拿号(中间没其它事干可以休息),直到拿到号后再返回。这个函数非常关键,还是上源码吧:
1 final boolean acquireQueued(final Node node, int arg) {
2 boolean failed = true;//标记是否成功拿到资源
3 try {
4 boolean interrupted = false;//标记等待过程中是否被中断过
5
6 //又是一个“自旋”!
7 for (;;) {
8 final Node p = node.predecessor();//拿到前驱
9 //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
10 if (p == head && tryAcquire(arg)) {
11 setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
12 p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
13 failed = false;
14 return interrupted;//返回等待过程中是否被中断过
15 }
16
17 //如果自己可以休息了,就进入waiting状态,直到被unpark()
18 if (shouldParkAfterFailedAcquire(p, node) &&
19 parkAndCheckInterrupt())
20 interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
21 }
22 } finally {
23 if (failed)
24 cancelAcquire(node);
25 }
26 }
到这里了,我们先不急着总结acquireQueued()的函数流程,先看看shouldParkAfterFailedAcquire()和parkAndCheckInterrupt()具体干些什么。
3.1.3.1 shouldParkAfterFailedAcquire(Node, Node)
此方法主要用于检查状态,看看自己是否真的可以去休息了(进入waiting状态,如果线程状态转换不熟,可以参考本人上一篇写的Thread详解),万一队列前边的线程都放弃了只是瞎站着,那也说不定,对吧!
1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
2 int ws = pred.waitStatus;//拿到前驱的状态
3 if (ws == Node.SIGNAL)
4 //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
5 return true;
6 if (ws > 0) {
7 /*
8 * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
9 * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)!
10 */
11 do {
12 node.prev = pred = pred.prev;
13 } while (pred.waitStatus > 0);
14 pred.next = node;
15 } else {
16 //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢!
17 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
18 }
19 return false;
20 }
整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。
3.1.3.2 parkAndCheckInterrupt()
如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。
1 private final boolean parkAndCheckInterrupt() {
2 LockSupport.park(this);//调用park()使线程进入waiting状态
3 return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
4 }
park()会让当前线程进入waiting状态。在此状态下,有两种途径可以唤醒该线程:1)被unpark();2)被interrupt()。(再说一句,如果线程状态转换不熟,可以参考本人写的Thread详解)。需要注意的是,Thread.interrupted()会清除当前线程的中断标记位。
3.1.3.3 小结
OK,看了shouldParkAfterFailedAcquire()和parkAndCheckInterrupt(),现在让我们再回到acquireQueued(),总结下该函数的具体流程:
- 结点进入队尾后,检查状态,找到安全休息点;
- 调用park()进入waiting状态,等待unpark()或interrupt()唤醒自己;
- 被唤醒后,看自己是不是有资格能拿到号。如果拿到,head指向当前结点,并返回从入队到拿到号的整个过程中是否被中断过;如果没拿到,继续流程1。
3.1.4 小结
OKOK,acquireQueued()分析完之后,我们接下来再回到acquire()!再贴上它的源码吧:
1 public final void acquire(int arg) {
2 if (!tryAcquire(arg) &&
3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4 selfInterrupt();
5 }
再来总结下它的流程吧:
- 调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
- 没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
- acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
由于此函数是重中之重,我再用流程图总结一下:
至此,acquire()的流程终于算是告一段落了。这也就是ReentrantLock.lock()的流程,不信你去看其lock()源码吧,整个函数就是一条acquire(1)!!!
3.2 release(int)
上一小节已经把acquire()说完了,这一小节就来讲讲它的反操作release()吧。此方法是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。这也正是unlock()的语义,当然不仅仅只限于unlock()。下面是release()的源码:
1 public final boolean release(int arg) {
2 if (tryRelease(arg)) {
3 Node h = head;//找到头结点
4 if (h != null && h.waitStatus != 0)
5 unparkSuccessor(h);//唤醒等待队列里的下一个线程
6 return true;
7 }
8 return false;
9 }
逻辑并不复杂。它调用tryRelease()来释放资源。有一点需要注意的是,它是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自定义同步器在设计tryRelease()的时候要明确这一点!!
3.2.1 tryRelease(int)
此方法尝试去释放指定量的资源。下面是tryRelease()的源码:
1 protected boolean tryRelease(int arg) {
2 throw new UnsupportedOperationException();
3 }
跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。
3.2.2 unparkSuccessor(Node)
此方法用于唤醒等待队列中下一个线程。下面是源码:
1 private void unparkSuccessor(Node node) {
2 //这里,node一般为当前线程所在的结点。
3 int ws = node.waitStatus;
4 if (ws < 0)//置零当前线程所在的结点状态,允许失败。
5 compareAndSetWaitStatus(node, ws, 0);
6
7 Node s = node.next;//找到下一个需要唤醒的结点s
8 if (s == null || s.waitStatus > 0) {//如果为空或已取消
9 s = null;
10 for (Node t = tail; t != null && t != node; t = t.prev)
11 if (t.waitStatus <= 0)//从这里可以看出,<=0的结点,都是还有效的结点。
12 s = t;
13 }
14 if (s != null)
15 LockSupport.unpark(s.thread);//唤醒
16 }
这个函数并不复杂。一句话概括:用unpark()唤醒等待队列中最前边的那个未放弃线程,这里我们也用s来表示吧。此时,再和acquireQueued()联系起来,s被唤醒后,进入if (p == head && tryAcquire(arg))的判断(即使p!=head也没关系,它会再进入shouldParkAfterFailedAcquire()寻找一个安全点。这里既然s已经是等待队列中最前边的那个未放弃线程了,那么通过shouldParkAfterFailedAcquire()的调整,s也必然会跑到head的next结点,下一次自旋p==head就成立啦),然后s把自己设置成head标杆结点,表示自己已经获取到资源了,acquire()也返回了!!And then, DO what you WANT!
3.2.3 小结
release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。
3.3 acquireShared(int)
此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。下面是acquireShared()的源码:
1 public final void acquireShared(int arg) {
2 if (tryAcquireShared(arg) < 0)
3 doAcquireShared(arg);
4 }
这里tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里acquireShared()的流程就是:
- tryAcquireShared()尝试获取资源,成功则直接返回;
- 失败则通过doAcquireShared()进入等待队列,直到获取到资源为止才返回。
3.3.1 doAcquireShared(int)
此方法用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。下面是doAcquireShared()的源码:
1 private void doAcquireShared(int arg) {
2 final Node node = addWaiter(Node.SHARED);//加入队列尾部
3 boolean failed = true;//是否成功标志
4 try {
5 boolean interrupted = false;//等待过程中是否被中断过的标志
6 for (;;) {
7 final Node p = node.predecessor();//前驱
8 if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
9 int r = tryAcquireShared(arg);//尝试获取资源
10 if (r >= 0) {//成功
11 setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
12 p.next = null; // help GC
13 if (interrupted)//如果等待过程中被打断过,此时将中断补上。
14 selfInterrupt();
15 failed = false;
16 return;
17 }
18 }
19
20 //判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
21 if (shouldParkAfterFailedAcquire(p, node) &&
22 parkAndCheckInterrupt())
23 interrupted = true;
24 }
25 } finally {
26 if (failed)
27 cancelAcquire(node);
28 }
29 }
有木有觉得跟acquireQueued()很相似?对,其实流程并没有太大区别。只不过这里将补中断的selfInterrupt()放到doAcquireShared()里了,而独占模式是放到acquireQueued()之外,其实都一样,不知道Doug Lea是怎么想的。
跟独占模式比,还有一点需要注意的是,这里只有线程是head.next时(“老二”),才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,假如老大用完后释放了5个资源,而老二需要6个,老三需要1个,老四需要2个。因为老大先唤醒老二,老二一看资源不够自己用继续park(),也更不会去唤醒老三和老四了。独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,多个线程是可以同时执行的,现在因为老二的资源需求量大,而把后面量小的老三和老四也都卡住了。
3.3.1.1 setHeadAndPropagate(Node, int)
1 private void setHeadAndPropagate(Node node, int propagate) {
2 Node h = head;
3 setHead(node);//head指向自己
4 //如果还有剩余量,继续唤醒下一个邻居线程
5 if (propagate > 0 || h == null || h.waitStatus < 0) {
6 Node s = node.next;
7 if (s == null || s.isShared())
8 doReleaseShared();
9 }
10 }
此方法在setHead()的基础上多了一步,就是自己苏醒的同时,如果条件符合(比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式!
doReleaseShared()我们留着下一小节的releaseShared()里来讲。
3.3.2 小结
OK,至此,acquireShared()也要告一段落了。让我们再梳理一下它的流程:
- tryAcquireShared()尝试获取资源,成功则直接返回;
- 失败则通过doAcquireShared()进入等待队列park(),直到被unpark()/interrupt()并成功获取到资源才返回。整个等待过程也是忽略中断的。
其实跟acquire()的流程大同小异,只不过多了个自己拿到资源后,还会去唤醒后继队友的操作(这才是共享嘛)。
3.4 releaseShared()
上一小节已经把acquireShared()说完了,这一小节就来讲讲它的反操作releaseShared()吧。此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。下面是releaseShared()的源码:
1 public final boolean releaseShared(int arg) {
2 if (tryReleaseShared(arg)) {//尝试释放资源
3 doReleaseShared();//唤醒后继结点
4 return true;
5 }
6 return false;
7 }
此方法的流程也比较简单,一句话:释放掉资源后,唤醒后继。跟独占模式下的release()相似,但有一点稍微需要注意:独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于可重入的考量;而共享模式下的releaseShared()则没有这种要求,一是共享的实质--多线程可并发执行;二是共享模式基本也不会重入吧(至少我还没见过),所以自定义同步器可以根据需要决定返回值。
3.4.1 doReleaseShared()
此方法主要用于唤醒后继。下面是它的源码:
1 private void doReleaseShared() {
2 for (;;) {
3 Node h = head;
4 if (h != null && h != tail) {
5 int ws = h.waitStatus;
6 if (ws == Node.SIGNAL) {
7 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
8 continue;
9 unparkSuccessor(h);//唤醒后继
10 }
11 else if (ws == 0 &&
12 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
13 continue;
14 }
15 if (h == head)// head发生变化
16 break;
17 }
18 }
3.5 小结
本节我们详解了独占和共享两种模式下获取-释放资源(acquire-release、acquireShared-releaseShared)的源码,相信大家都有一定认识了。值得注意的是,acquire()和acquireSahred()两种方法下,线程在等待队列中都是忽略中断的。AQS也支持响应中断的,acquireInterruptibly()/acquireSharedInterruptibly()即是,这里相应的源码跟acquire()和acquireSahred()差不多,这里就不再详解了。
四、简单应用
通过前边几个章节的学习,相信大家已经基本理解AQS的原理了。这里再将“框架”一节中的一段话复制过来:
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:
- isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
- tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
- tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
- tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
- tryReleaseShared(int):共享方式。尝试释放资源,成功则返回true,失败则返回false。
OK,下面我们就以AQS源码里的Mutex为例,讲一下AQS的简单应用。
4.1 Mutex(互斥锁)
Mutex是一个不可重入的互斥锁实现。锁资源(AQS里的state)只有两种状态:0表示未锁定,1表示锁定。下边是Mutex的核心源码:
1 class Mutex implements Lock, java.io.Serializable {
2 // 自定义同步器
3 private static class Sync extends AbstractQueuedSynchronizer {
4 // 判断是否锁定状态
5 protected boolean isHeldExclusively() {
6 return getState() == 1;
7 }
8
9 // 尝试获取资源,立即返回。成功则返回true,否则false。
10 public boolean tryAcquire(int acquires) {
11 assert acquires == 1; // 这里限定只能为1个量
12 if (compareAndSetState(0, 1)) {//state为0才设置为1,不可重入!
13 setExclusiveOwnerThread(Thread.currentThread());//设置为当前线程独占资源
14 return true;
15 }
16 return false;
17 }
18
19 // 尝试释放资源,立即返回。成功则为true,否则false。
20 protected boolean tryRelease(int releases) {
21 assert releases == 1; // 限定为1个量
22 if (getState() == 0)//既然来释放,那肯定就是已占有状态了。只是为了保险,多层判断!
23 throw new IllegalMonitorStateException();
24 setExclusiveOwnerThread(null);
25 setState(0);//释放资源,放弃占有状态
26 return true;
27 }
28 }
29
30 // 真正同步类的实现都依赖继承于AQS的自定义同步器!
31 private final Sync sync = new Sync();
32
33 //lock<-->acquire。两者语义一样:获取资源,即便等待,直到成功才返回。
34 public void lock() {
35 sync.acquire(1);
36 }
37
38 //tryLock<-->tryAcquire。两者语义一样:尝试获取资源,要求立即返回。成功则为true,失败则为false。
39 public boolean tryLock() {
40 return sync.tryAcquire(1);
41 }
42
43 //unlock<-->release。两者语文一样:释放资源。
44 public void unlock() {
45 sync.release(1);
46 }
47
48 //锁是否占有状态
49 public boolean isLocked() {
50 return sync.isHeldExclusively();
51 }
52 }
同步类在实现时一般都将自定义同步器(sync)定义为内部类,供自己使用;而同步类自己(Mutex)则实现某个接口,对外服务。当然,接口的实现要直接依赖sync,它们在语义上也存在某种对应关系!!而sync只用实现资源state的获取-释放方式tryAcquire-tryRelelase,至于线程的排队、等待、唤醒等,上层的AQS都已经实现好了,我们不用关心。
除了Mutex,ReentrantLock/CountDownLatch/Semphore这些同步类的实现方式都差不多,不同的地方就在获取-释放资源的方式tryAcquire-tryRelelase。掌握了这点,AQS的核心便被攻破了!
OK,至此,整个AQS的讲解也要落下帷幕了。
Java并发编程原理与实战十六:AQS的更多相关文章
- Java并发编程原理与实战十:单例问题与线程安全性深入解析
单例模式我想这个设计模式大家都很熟悉,如果不熟悉的可以看我写的设计模式系列然后再来看本文.单例模式通常可以分为:饿汉式和懒汉式,那么分别和线程安全是否有关呢? 一.饿汉式 先看代码: package ...
- Java并发编程原理与实战十五:手动实现一个可重入锁
package com.roocon.thread.ta1; public class Sequence { private MyLock lock = new MyLock(); private ...
- Java并发编程原理与实战十二:深入理解volatile原理与使用
volatile:称之为轻量级锁,被volatile修饰的变量,在线程之间是可见的. 可见:一个线程修改了这个变量的值,在另一个线程中能够读取到这个修改后的值. synchronized除了线程之间互 ...
- Java并发编程原理与实战十四:Lock接口的认识和使用
保证线程安全演进: synchronized volatile AtomicInteger Lock接口提供的方法: void lock():加锁 void unlock():解锁 void lock ...
- Java并发编程原理与实战十九:AQS 剖析
一.引言在JDK1.5之前,一般是靠synchronized关键字来实现线程对共享变量的互斥访问.synchronized是在字节码上加指令,依赖于底层操作系统的Mutex Lock实现.而从JDK1 ...
- Java并发编程原理与实战十八:读写锁
ReadWriteLock也是一个接口,提供了readLock和writeLock两种锁的操作机制,一个资源可以被多个线程同时读,或者被一个线程写,但是不能同时存在读和写线程. 基本规则: 读读不互斥 ...
- Java并发编程原理与实战十七:AQS实现重入锁
一.什么是重入锁 可重入锁就是当前持有锁的线程能够多次获取该锁,无需等待 二.什么是AQS AQS是JDK1.5提供的一个基于FIFO等待队列实现的一个用于实现同步器的基础框架,这个基础框架的重要性可 ...
- Java并发编程原理与实战五:创建线程的多种方式
一.继承Thread类 public class Demo1 extends Thread { public Demo1(String name) { super(name); } @Override ...
- Java并发编程原理与实战二十五:ThreadLocal线程局部变量的使用和原理
1.什么是ThreadLocal ThreadLocal顾名思义是线程局部变量.这种变量和普通的变量不同,这种变量在每个线程中通过get和set方法访问, 每个线程有自己独立的变量副本.线程局部变量不 ...
随机推荐
- 浅学html
数据库web端需要了解html等语言,就初浅学习一下 <!DOCTYPE html> <html> <head> <meta charset="ut ...
- Rsyslog日志服务搭建
rsyslog是比syslog功能更强大的日志记录系统,可以将日志输出到文件,数据库和其它程序.Centos 6.x默认的rsyslog版本是5.x. 网上关于rsyslog的安装配置文档倒是不少,但 ...
- GDI+ 支持的图片文件格式
您可以使用许多标准格式将位图储存在磁盘文件中.GDI+ 支持以下各种图片文件格式. o 位图 (BMP) 位图是 Windows 用来储存设备无关和与应用程序无关的图片的标准格式.文件头决定了指定的位 ...
- HTML与URL两种录制模式分析(转)
如何选择两种模式? 1.基于浏览器的应用程序推荐使用HTML-Based Script. 2.不是基于浏览器的应用程序推荐使用URL-Based Script. 3.如果基于浏览器的应用程序中包含了J ...
- delphi(假三层之数据访问层)(第一天)
本论文主要是通过三天来讲解三层的结构,今天是第一天,先讲解一下delphi下的Models层,我主要封装了两个查询得到数据集的函数,主要是通过在表示层上创建的数数据集控件传递进来,通过业务逻辑对语句的 ...
- 【刷题】BZOJ 2959 长跑
Description 某校开展了同学们喜闻乐见的阳光长跑活动.为了能"为祖国健康工作五十年",同学们纷纷离开寝室,离开教室,离开实验室,到操场参加3000米长跑运动.一时间操场上 ...
- BZOJ 2460: [BeiJing2011]元素
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 878 Solved: 470[Submit][Statu ...
- CF1009F Dominant Indices 解题报告
CF1009F Dominant Indices 题意简述 给出一颗以\(1\)为跟的有根树,定义\(d_{i,j}\)为以\(i\)为根节点的子树中到\(i\)的距离恰好为\(j\)的点的个数,对每 ...
- UOJ #126 【NOI2013】 快餐店
题目链接:快餐店 震惊!某ZZ选手此题调了一天竟是因为……>>点击查看 一般碰到这种基环树的题都要先想想树上怎么做.这道题如果是在树上的话……好像求一遍直径就做完了?答案就是直径长度的一半 ...
- xampp+vscode开发php的配置流程
一.所需文件 1.xampp集成服务器(个人使用7.1.7)https://www.apachefriends.org/download.html 2.vscode https://code.visu ...