python多线程概念
转自:http://www.cnblogs.com/fnng/p/3489321.html
在使用多线程之前,我们首页要理解什么是进程和线程。
什么是进程?
计算机程序只不过是磁盘中可执行的,二进制(或其它类型)的数据。它们只有在被读取到内存中,被操作系统调用的时候才开始它们的生命期。进程(有时被称为重量级进程)是程序的一次执行。每个进程都有自己的地址空间,内存,数据栈以及其它记录其运行轨迹的辅助数据。操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间。
什么是线程?
线程(有时被称为轻量级进程)跟进程有些相似,不同的是,所有的线程运行在同一个进程中,共享相同的运行环境。我们可以想像成是在主进程或“主线程”中并行运行的“迷你进程”。
7.2.1、单线程
在单线程中顺序执行两个循环。一定要一个循环结束后,另一个才能开始。总时间是各个循环运行时间之和。
onetherad.py
from time import sleep, ctime def loop0():
print 'start loop 0 at:', ctime()
sleep(4)
print 'loop 0 done at:', ctime() def loop1():
print 'start loop 1 at:', ctime()
sleep(2)
print 'loop 1 done at:', ctime() def main():
print 'start:', ctime()
loop0()
loop1()
print 'all end:', ctime() if __name__ == '__main__':
main()
运行结果:
start loop 0 at: Mon Dec 23 09:59:44 2013
loop 0 done at: Mon Dec 23 09:59:48 2013
start loop 1 at: Mon Dec 23 09:59:48 2013
loop 1 done at: Mon Dec 23 09:59:50 2013
all end: Mon Dec 23 09:59:50 2013
Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。
7.2.1、thread模块
mtsleep1.py
import thread
from time import sleep, ctime
loops = [4,2]
def loop0():
print 'start loop 0 at:', ctime()
sleep(4)
print 'loop 0 done at:', ctime() def loop1():
print 'start loop 1 at:', ctime()
sleep(2)
print 'loop 1 done at:', ctime() def main():
print 'start:', ctime()
thread.start_new_thread(loop0, ())
thread.start_new_thread(loop1, ())
sleep(6)
print 'all end:', ctime() if __name__ == '__main__':
main()
start_new_thread()要求一定要有前两个参数。所以,就算我们想要运行的函数不要参数,我们也要传一个空的元组。
这个程序的输出与之前的输出大不相同,之前是运行了 6,7 秒,而现在则是 4 秒,是最长的循环的运行时间与其它的代码的时间总和。
运行结果:
start: Mon Dec 23 10:05:09 2013
start loop 0 at: Mon Dec 23 10:05:09 2013
start loop 1 at: Mon Dec 23 10:05:09 2013
loop 1 done at: Mon Dec 23 10:05:11 2013
loop 0 done at: Mon Dec 23 10:05:13 2013
all end: Mon Dec 23 10:05:15 2013
睡眠 4 秒和 2 秒的代码现在是并发执行的。这样,就使得总的运行时间被缩短了。你可以看到,loop1 甚至在 loop0 前面就结束了。
程序的一大不同之处就是多了一个“sleep(6)”的函数调用。如果我们没有让主线程停下来,那主线程就会运行下一条语句,显示“all end”,然后就关闭运行着 loop0()和 loop1()的两个线程并退出了。我们使用 6 秒是因为我们已经知道,两个线程(你知道,一个要 4 秒,一个要 2 秒)在主线程等待 6 秒后应该已经结束了。
你也许在想,应该有什么好的管理线程的方法,而不是在主线程里做一个额外的延时 6 秒的操作。因为这样一来,我们的总的运行时间并不比单线程的版本来得少。而且,像这样使用 sleep()函数做线程的同步操作是不可靠的。如果我们的循环的执行时间不能事先确定的话,那怎么办呢?这可能造成主线程过早或过晚退出。这就是锁的用武之地了。
mtsleep2.py
#coding=utf-8
import thread
from time import sleep, ctime loops = [4,2] def loop(nloop, nsec, lock):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'loop', nloop, 'done at:', ctime()
#解锁
lock.release() def main():
print 'starting at:', ctime()
locks =[]
#以loops数组创建列表,并赋值给nloops
nloops = range(len(loops)) for i in nloops:
lock = thread.allocate_lock()
#锁定
lock.acquire()
#追加到locks[]数组中
locks.append(lock) #执行多线程
for i in nloops:
thread.start_new_thread(loop,(i,loops[i],locks[i])) for i in nloops:
while locks[i].locked():
pass print 'all end:', ctime() if __name__ == '__main__':
main()
thread.allocate_lock()
返回一个新的锁定对象。
acquire() /release()
一个原始的锁有两种状态,锁定与解锁,分别对应acquire()和release() 方法。
range()
range()函数来创建列表包含算术级数。
range(len(loops))理解:
>>> aa= "hello" #长度计算
>>> len(aa)
5 #创建列表
>>> range(len(aa))
[0, 1, 2, 3, 4] #循环输出列表元素
>>> for a in range(len(aa)):
print a 0
1
2
3
4
我们先调用 thread.allocate_lock()函数创建一个锁的列表,并分别调用各个锁的 acquire()函数获得锁。获得锁表示“把锁锁上”。锁上后,我们就把锁放到锁列表 locks 中。
下一个循环创建线程,每个线程都用各自的循环号,睡眠时间和锁为参数去调用 loop()函数。为什么我们不在创建锁的循环里创建线程呢?有以下几个原因:(1) 我们想到实现线程的同步,所以要让“所有的马同时冲出栅栏”。(2) 获取锁要花一些时间,如果你的线程退出得“太快”,可能会导致还没有获得锁,线程就已经结束了的情况。
在线程结束的时候,线程要自己去做解锁操作。最后一个循环只是坐在那一直等(达到暂停主线程的目的),直到两个锁都被解锁为止才继续运行。
mtsleep2.py运行结果:
starting at: Mon Dec 23 20:57:26 2013
start loop start loop0 1at: at:Mon Dec 23 20:57:26 2013
Mon Dec 23 20:57:26 2013
loop 1 done at: Mon Dec 23 20:57:28 2013
loop 0 done at: Mon Dec 23 20:57:30 2013
all end: Mon Dec 23 20:57:30 2013
7.2.1、threading模块
我们应该避免使用thread模块,原因是它不支持守护线程。当主线程退出时,所有的子线程不论它们是否还在工作,都会被强行退出。有时我们并不期望这种行为,这时就引入了守护线程的概念。threading模块则支持守护线程。
mtsleep3.py
#coding=utf-8
import threading
from time import sleep, ctime loops = [4,2] def loop(nloop, nsec):
print 'start loop', nloop, 'at:', ctime()
sleep(nsec)
print 'loop', nloop, 'done at:', ctime() def main():
print 'starting at:', ctime()
threads = []
nloops = range(len(loops)) #创建线程
for i in nloops:
t = threading.Thread(target=loop,args=(i,loops[i]))
threads.append(t) #开始线程
for i in nloops:
threads[i].start() #等待所有结束线程
for i in nloops:
threads[i].join() print 'all end:', ctime() if __name__ == '__main__':
main()
运行结果:
starting at: Mon Dec 23 22:58:55 2013
start loop 0 at: Mon Dec 23 22:58:55 2013
start loop 1 at: Mon Dec 23 22:58:55 2013
loop 1 done at: Mon Dec 23 22:58:57 2013
loop 0 done at: Mon Dec 23 22:58:59 2013
all end: Mon Dec 23 22:58:59 2013
start()
开始线程活动
join()
等待线程终止
所有的线程都创建了之后,再一起调用 start()函数启动,而不是创建一个启动一个。而且,不用再管理一堆锁(分配锁,获得锁,释放锁,检查锁的状态等),只要简单地对每个线程调用 join()函数就可以了。
join()会等到线程结束,或者在给了 timeout 参数的时候,等到超时为止。join()的另一个比较重要的方面是它可以完全不用调用。一旦线程启动后,就会一直运行,直到线程的函数结束,退出为止。
使用可调用的类
mtsleep4.py
#coding=utf-8
import threading
from time import sleep, ctime loops = [4,2] class ThreadFunc(object): def __init__(self,func,args,name=''):
self.name=name
self.func=func
self.args=args def __call__(self):
apply(self.func,self.args) def loop(nloop,nsec):
print "seart loop",nloop,'at:',ctime()
sleep(nsec)
print 'loop',nloop,'done at:',ctime() def main():
print 'starting at:',ctime()
threads=[]
nloops = range(len(loops)) for i in nloops:
#调用ThreadFunc实例化的对象,创建所有线程
t = threading.Thread(
target=ThreadFunc(loop,(i,loops[i]),loop.__name__))
threads.append(t) #开始线程
for i in nloops:
threads[i].start() #等待所有结束线程
for i in nloops:
threads[i].join() print 'all end:', ctime() if __name__ == '__main__':
main()
运行结果:
starting at: Tue Dec 24 16:39:16 2013
seart loop 0 at: Tue Dec 24 16:39:16 2013
seart loop 1 at: Tue Dec 24 16:39:16 2013
loop 1 done at: Tue Dec 24 16:39:18 2013
loop 0 done at: Tue Dec 24 16:39:20 2013
all end: Tue Dec 24 16:39:20 2013
创建新线程的时候,Thread 对象会调用我们的ThreadFunc 对象,这时会用到一个特殊函数__call__()。由于我们已经有了要用的参数,所以就不用再传到 Thread()的构造函数中。由于我们有一个参数的元组,这时要在代码中使用 apply()函数。
我们传了一个可调用的类(的实例),而不是仅传一个函数。
__init__()
方法在类的一个对象被建立时运行。这个方法可以用来对你的对象做一些初始化。
apply()
apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数。args是一个包含将要提供给函数的按位置传递的参数的元组。如果省略了args,任何参数都不会被传递,kwargs是一个包含关键字参数的字典。
apply() 用法:
#不带参数的方法
>>> def say():
print 'say in' >>> apply(say)
say in #函数只带元组的参数
>>> def say(a,b):
print a,b >>> apply(say,('hello','虫师'))
hello 虫师 #函数带关键字参数
>>> def say(a=1,b=2):
print a,b >>> def haha(**kw):
apply(say,(),kw) >>> haha(a='a',b='b')
a b
python多线程概念的更多相关文章
- python 多线程概念
######多线程##### 什么是线程: 线程是操作系统能够进行运算调度的最小单位(程序执行流的最小单元).它被包含在进程之中,是进程中的实际运作单位. 一个进程中可以并发多个线程,每条线程并行执行 ...
- Python多线程锁
[Python之旅]第六篇(四):Python多线程锁 python lock 多线程 多线程使用方法 多线程锁 摘要: 在多线程程序执行过程中,为什么需要给一些线程加锁以及如何加锁,下面就来 ...
- Day9 - Python 多线程、进程
Python之路,Day9, 进程.线程.协程篇 本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线 ...
- 搞定python多线程和多进程
1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...
- 进程,线程,GIL,Python多线程,生产者消费者模型都是什么鬼
1. 操作系统基本知识,进程,线程 CPU是计算机的核心,承担了所有的计算任务: 操作系统是计算机的管理者,它负责任务的调度.资源的分配和管理,统领整个计算机硬件:那么操作系统是如何进行任务调度的呢? ...
- python多线程、多进程以及GIL
多线程 使用threading模块创建线程 传入一个函数 这种方式是最基本的,即调用threading中的Thread类的构造函数,然后指定参数target=func,再使用返回的Thread的实例调 ...
- 浅析Python多线程
学习Python多线程的资料很多,吐槽Python多线程的博客也不少.本文主要介绍Python多线程实际应用,且假设读者已经了解多线程的基本概念.如果读者对进程线程概念不甚了解,可参见知名博主 阮一峰 ...
- day-3 python多线程编程知识点汇总
python语言以容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引广大编程爱好者.但是也存在一个被熟知的性能瓶颈:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运 ...
- Python多线程操作
多线程是一门编程语言的重要操作. GIL(全局解释器锁)存在于python解释器中,用来确保当前只有一个线程被执行,当一个线程获得GIL后,这个线程将被执行,退出时释放GIL,由下一个获得GIL的线程 ...
随机推荐
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- 【干货】PHP常见危险函数
passthru() 功能描述:允许执行一个外部程序并回显输出,类似于 exec(). 危险等级:高 exec() 功能描述:允许执行一个外部程序(如 UNIX Shell 或 CMD 命令等). 危 ...
- iOS学习之WebView的使用 (主要是下面的全屏半透明实现)
1.使用UIWebView加载网页 运行XCode 4.3,新建一个Single View Application,命名为WebViewDemo. 2.加载WebView 在ViewControlle ...
- JTAG接线描述
http://www.dzsc.com/data/html/2008-12-23/75397.html JTAG测试信号由下面5个信号组成. TRST:测试复位输入信号,测试接口初始化 TCK:测试时 ...
- 查看是否安装.NET Framework、.NET Framework的版本号、CLR版本号
查看是否安装.NET Framework→%SystemRoot%\System32→如果有mscoree.dll文件,表明.NET Framework已安装 查看安装了哪些版本的.NET Framw ...
- 【docker】centOS7上部署的mysql和spring boot服务,要求,mysql的时间、java程序服务的时间和宿主机的时间完全保持一致【修改mysql时区,临时和永久】【修改spring boot配置文件时区】【修改docker启动spring boot实例程序时区】
要求:centOS7上部署的mysql和spring boot服务,要求,mysql的时间.java程序服务的时间和宿主机的时间完全保持一致: ============================ ...
- python接口自动化26-参数关联和JSESSIONID(上个接口返回数据作为下个接口请求参数)
前言 参数关联是接口测试和性能测试最为重要的一个步骤,很多接口的请求参数是动态的,并且需要从上一个接口的返回值里面取出来,一般只能用一次就失效了. 最常见的案例就是网站的登录案例,很多网站的登录并不仅 ...
- python笔记1-用python解决小学生数学题
前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为6角,7角,8角,请问你最大的不可支付邮资是多少元? 小编掰着手指头和脚趾头算了下,答案是:1.7元 那么问题来了?为啥是1.7 ...
- nyis oj 68 三点顺序 (计算几何基础)
三点顺序 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描写叙述 如今给你不共线的三个点A,B,C的坐标,它们一定能组成一个三角形,如今让你推断A,B,C是顺时针给出的还是逆 ...
- SSL协议具体解释
背景介绍 近期在看<password学与网络安全>相关的书籍,这篇文章主要具体介绍一下著名的网络安全协议SSL. 在開始SSl介绍之前,先给大家介绍几个password学的概念和相关 ...