一数据准备

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4

创建数据库及表

create database if not exists cookie;
use cookie;
drop table if exists cookie1;
create table cookie1(cookieid string, createtime string, pv int) row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie1.txt" into table cookie1;
select * from cookie1;

SUM

查询语句

select
cookieid,
createtime,
pv,
sum(pv) over (partition by cookieid order by createtime rows between unbounded preceding and current row) as pv1,
sum(pv) over (partition by cookieid order by createtime) as pv2,
sum(pv) over (partition by cookieid) as pv3,
sum(pv) over (partition by cookieid order by createtime rows between 3 preceding and current row) as pv4,
sum(pv) over (partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5,
sum(pv) over (partition by cookieid order by createtime rows between current row and unbounded following) as pv6
from cookie1;

查询结果

说明

pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号
pv2: 同pv1
pv3: 分组内(cookie1)所有的pv累加
pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号
pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21
pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13,14号=14号+15号+16号=2+4+4=10

如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点,

  UNBOUNDED PRECEDING 表示从前面的起点,

  UNBOUNDED FOLLOWING:表示到后面的终点
–其他AVG,MIN,MAX,和SUM用法一样。

AVG

查询语句

select
cookieid,
createtime,
pv,
avg(pv) over (partition by cookieid order by createtime rows between unbounded preceding and current row) as pv1, -- 默认为从起点到当前行
avg(pv) over (partition by cookieid order by createtime) as pv2, --从起点到当前行,结果同pv1
avg(pv) over (partition by cookieid) as pv3, --分组内所有行
avg(pv) over (partition by cookieid order by createtime rows between 3 preceding and current row) as pv4, --当前行+往前3行
avg(pv) over (partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5, --当前行+往前3行+往后1行
avg(pv) over (partition by cookieid order by createtime rows between current row and unbounded following) as pv6 --当前行+往后所有行
from cookie1;

查询结果

MIN

查询语句

select
cookieid,
createtime,
pv,
min(pv) over (partition by cookieid order by createtime rows between unbounded preceding and current row) as pv1, -- 默认为从起点到当前行
min(pv) over (partition by cookieid order by createtime) as pv2, --从起点到当前行,结果同pv1
min(pv) over (partition by cookieid) as pv3, --分组内所有行
min(pv) over (partition by cookieid order by createtime rows between 3 preceding and current row) as pv4, --当前行+往前3行
min(pv) over (partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5, --当前行+往前3行+往后1行
min(pv) over (partition by cookieid order by createtime rows between current row and unbounded following) as pv6 --当前行+往后所有行
from cookie1;

查询结果

MAX

查询语句

select
cookieid,
createtime,
pv,
max(pv) over (partition by cookieid order by createtime rows between unbounded preceding and current row) as pv1, -- 默认为从起点到当前行
max(pv) over (partition by cookieid order by createtime) as pv2, --从起点到当前行,结果同pv1
max(pv) over (partition by cookieid) as pv3, --分组内所有行
max(pv) over (partition by cookieid order by createtime rows between 3 preceding and current row) as pv4, --当前行+往前3行
max(pv) over (partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5, --当前行+往前3行+往后1行
max(pv) over (partition by cookieid order by createtime rows between current row and unbounded following) as pv6 --当前行+往后所有行
from cookie1;

查询结果

二数据准备

接下来介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途。

注意: 序列函数不支持WINDOW子句。(ROWS BETWEEN

cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7

创建表

use cookie;
drop table if exists cookie2;
create table cookie2(cookieid string, createtime string, pv int) row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie2.txt" into table cookie2;
select * from cookie2;

NTILE

说明

NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值
NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均匀,默认增加第一个切片的分布

查询语句

select
cookieid,
createtime,
pv,
ntile(2) over (partition by cookieid order by createtime) as rn1, --分组内将数据分成2片
ntile(3) over (partition by cookieid order by createtime) as rn2, --分组内将数据分成2片
ntile(4) over (order by createtime) as rn3 --将所有数据分成4片
from cookie.cookie2
order by cookieid,createtime;

查询结果

比如,统计一个cookie,pv数最多的前1/3的天

查询语句

select
cookieid,
createtime,
pv,
ntile(3) over (partition by cookieid order by pv desc ) as rn
from cookie.cookie2;

查询结果

--rn = 1 的记录,就是我们想要的结果

ROW_NUMBER

说明

ROW_NUMBER() –从1开始,按照顺序,生成分组内记录的序列
–比如,按照pv降序排列,生成分组内每天的pv名次
ROW_NUMBER() 的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

分组排序

select
cookieid,
createtime,
pv,
row_number() over (partition by cookieid order by pv desc) as rn
from cookie.cookie2;

查询结果

-- 所以如果需要取每一组的前3名,只需要rn<=3即可,适合TopN

RANK 和 DENSE_RANK

—RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
—DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

查询语句

select
cookieid,
createtime,
pv,
rank() over (partition by cookieid order by pv desc) as rn1,
dense_rank() over (partition by cookieid order by pv desc) as rn2,
row_number() over (partition by cookieid order by pv desc) as rn3
from cookie.cookie2
where cookieid='cookie1';

查询结果

ROW_NUMBER、RANK和DENSE_RANK的区别

row_number: 按顺序编号,不留空位
rank: 按顺序编号,相同的值编相同号,留空位
dense_rank: 按顺序编号,相同的值编相同的号,不留空位

三数据准备

cookie3.txt

d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000

创建表

use cookie;
drop table if exists cookie3;
create table cookie3(dept string, userid string, sal int)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie3.txt" into table cookie3;
select * from cookie3;

CUME_DIST

说明

CUME_DIST :小于等于当前值的行数/分组内总行数

查询语句

比如,统计小于等于当前薪水的人数,所占总人数的比例

select
dept,
userid,
sal,
cume_dist() over (order by sal) as rn1,
cume_dist() over (partition by dept order by sal) as rn2
from cookie.cookie3;

查询结果

结果说明

rn1: 没有partition,所有数据均为1组,总行数为5
第一行:小于等于1000的行数为1,因此,1/5=0.2
第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2
: 按照部门分组,dpet=d1的行数为3,
第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666

PERCENT_RANK

说明

 –PERCENT_RANK :分组内当前行的RANK值-1/分组内总行数-1

查询语句

select
dept,
userid,
sal,
percent_rank() over (order by sal) as rn1, --分组内
rank() over (order by sal) as rn11, --分组内的rank值
sum(1) over (partition by null) as rn12, --分组内总行数
percent_rank() over (partition by dept order by sal) as rn2,
rank() over (partition by dept order by sal) as rn21,
sum(1) over (partition by dept) as rn22
from cookie.cookie3;

查询结果

结果说明

–PERCENT_RANK :分组内当前行的RANK值-1/分组内总行数-1

rn1 ==  (rn11-1) / (rn12-1)

rn2 ==  (rn21-1) / (rn22-1)

rn1: rn1 = (rn11-) / (rn12-)
第一行,(-)/(-)=/=
第二行,(-)/(-)=/=0.25
第四行,(-)/(-)=/=0.75
rn2: 按照dept分组,
dept=d1的总行数为3
第一行,(-)/(-)=
第三行,(-)/(-)=

四数据准备

cookie4.txt

cookie1,2015-04-10 10:00:02,url2
cookie1,2015-04-10 10:00:00,url1
cookie1,2015-04-10 10:03:04,1url3
cookie1,2015-04-10 10:50:05,url6
cookie1,2015-04-10 11:00:00,url7
cookie1,2015-04-10 10:10:00,url4
cookie1,2015-04-10 10:50:01,url5
cookie2,2015-04-10 10:00:02,url22
cookie2,2015-04-10 10:00:00,url11
cookie2,2015-04-10 10:03:04,1url33
cookie2,2015-04-10 10:50:05,url66
cookie2,2015-04-10 11:00:00,url77
cookie2,2015-04-10 10:10:00,url44
cookie2,2015-04-10 10:50:01,url55

创建表

use cookie;
drop table if exists cookie4;
create table cookie4(cookieid string, createtime string, url string)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie4.txt" into table cookie4;
select * from cookie4;

LAG

说明

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值

第一个参数为列名,
第二个参数为往上第n行(可选,默认为1),
第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

查询语句

select
cookieid,
createtime,
url,
row_number() over (partition by cookieid order by createtime) as rn,
LAG(createtime,1,'1970-01-01 00:00:00') over (partition by cookieid order by createtime) as last_1_time,
LAG(createtime,2) over (partition by cookieid order by createtime) as last_2_time
from cookie.cookie4;

查询结果

结果说明

last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'
        cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
        cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02
        cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01
last_2_time
: 指定了往上第2行的值,为指定默认值
        cookie1第一行,往上2行为NULL
        cookie1第二行,往上2行为NULL
        cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02
        cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01

LEAD

说明

与LAG相反

LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值

第一个参数为列名,
第二个参数为往下第n行(可选,默认为1),
第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

查询语句

select
cookieid,
createtime,
url,
row_number() over (partition by cookieid order by createtime) as rn,
LEAD(createtime,1,'1970-01-01 00:00:00') over (partition by cookieid order by createtime) as next_1_time,
LEAD(createtime,2) over (partition by cookieid order by createtime) as next_2_time
from cookie.cookie4;

查询结果

结果说明

--逻辑与LAG一样,只不过LAG是往上,LEAD是往下。

FIRST_VALUE

说明

取分组内排序后,截止到当前行,第一个值

查询语句

select
cookieid,
createtime,
url,
row_number() over (partition by cookieid order by createtime) as rn,
first_value(url) over (partition by cookieid order by createtime) as first1
from cookie.cookie4;

查询结果

LAST_VALUE

说明

取分组内排序后,截止到当前行,最后一个值

查询语句

select
cookieid,
createtime,
url,
row_number() over (partition by cookieid order by createtime) as rn,
last_value(url) over (partition by cookieid order by createtime) as last1
from cookie.cookie4;

查询结果

如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果

如果想要取分组内排序后最后一个值,则需要变通一下

查询语句

select
cookieid,
createtime,
url,
row_number() over (partition by cookieid order by createtime) as rn,
LAST_VALUE(url) over (partition by cookieid order by createtime) as last1,
FIRST_VALUE(url) over (partition by cookieid order by createtime desc) as last2
from cookie.cookie4
order by cookieid,createtime;

查询结果

提示:在使用分析函数的过程中,要特别注意ORDER BY子句,用的不恰当,统计出的结果就不是你所期望的。

五数据准备

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1

创建表

use cookie;
drop table if exists cookie5;
create table cookie5(month string, day string, cookieid string)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie5.txt" into table cookie5;
select * from cookie5;

GROUPING SETS和GROUPING__ID

说明

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

GROUPING__ID,表示结果属于哪一个分组集合。

查询语句

select
month,
day,
count(distinct cookieid) as uv,
GROUPING__ID
from cookie.cookie5
group by month,day
grouping sets (month,day)
order by GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day

查询结果

结果说明

第一列是按照month进行分组

第二列是按照day进行分组

第三列是按照month或day分组是,统计这一组有几个不同的cookieid

第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day

再比如

SELECT  month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

CUBE

说明

根据GROUP BY的维度的所有组合进行聚合

查询语句

SELECT  month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;

等价于

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

查询结果

ROLLUP

说明

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合

查询语句

-- 比如,以month维度进行层级聚合

SELECT  month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;

可以实现这样的上钻过程:
月天的UV->月的UV->总UV

--把month和day调换顺序,则以day维度进行层级聚合:

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

Hive(七)Hive分析窗口函数的更多相关文章

  1. hive Spark SQL分析窗口函数

    Spark1.4发布,支持了窗口分析函数(window functions).在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分 ...

  2. Hive分析窗口函数(一) SUM,AVG,MIN,MAX

    Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive分析窗口函数(一) SUM,AVG,MIN,MAX Hive中提供了越来越多的分析函数,用于完成负责的统计分析.抽时间将所有的分析窗 ...

  3. 基于hive的日志分析系统

    转自 http://www.cppblog.com/koson/archive/2010/07/19/120773.html           hive 简介         hive 是一个基于  ...

  4. HADOOP docker(七):hive权限管理

    1. hive权限简介1.1 hive中的用户与组1.2 使用场景1.3 权限模型1.3 hive的超级用户2. 授权管理2.1 开启权限管理2.2 实现超级用户2.3 实现hiveserver2用户 ...

  5. Hive记录-Hive介绍(转载)

    1.Hive是什么? Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转换为 MapReduce 任务执 ...

  6. Hive 文件格式 & Hive操作(外部表、内部表、区、桶、视图、索引、join用法、内置操作符与函数、复合类型、用户自定义函数UDF、查询优化和权限控制)

    本博文的主要内容如下: Hive文件存储格式 Hive 操作之表操作:创建外.内部表 Hive操作之表操作:表查询 Hive操作之表操作:数据加载 Hive操作之表操作:插入单表.插入多表 Hive语 ...

  7. (hive)hive优化(转载)

    1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...

  8. 【hive】——Hive四种数据导入方式

    Hive的几种常见的数据导入方式这里介绍四种:(1).从本地文件系统中导入数据到Hive表:(2).从HDFS上导入数据到Hive表:(3).从别的表中查询出相应的数据并导入到Hive表中:(4).在 ...

  9. ubuntu下搭建hive(包括hive的web接口)记录

    Hive版本 0.12.0(独立模式) Hadoop版本 1.12.1 Ubuntu 版本 12.10 今天试着搭建了hive,差点迷失在了网上各种资料中,现在把我的经验分享给大家,亲手实践过,但未必 ...

  10. [Hive - LanguageManual] Hive Concurrency Model (待)

    Hive Concurrency Model Hive Concurrency Model Use Cases Turn Off Concurrency Debugging Configuration ...

随机推荐

  1. SQL Server 2008定期的备份数据库--差异+完整

    https://www.cnblogs.com/l1pe1/p/7885207.html https://www.cnblogs.com/tylerflyn/p/8051398.html https: ...

  2. [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  3. 快速搭建Spring Boot项目

    Spring boot是Spring推出的一个轻量化web框架,主要解决了Spring对于小型项目饱受诟病的配置和开发速度问题. Spring Boot 包含的特性如下: 创建可以独立运行的 Spri ...

  4. 如何创建一个 Lua 模块

    如何创建一个 Lua 模块 翻译自: How to Create a Lua Module 译者: FreeBlues 正文 Lua编程语言 中的一个 模块(module)是一个包含函数和变量的代码片 ...

  5. js数据类型隐式转换问题

    js数据类型隐式转换 ![] == false //true 空数组和基本类型转换,会先[].toString() 再继续比较 ![] == [] //true ![] //false [] == [ ...

  6. J - Borg Maze +getchar 的使用注意(二维字符数组的输入)

    题目链接: https://vjudge.net/contest/66965#problem/J 具体思路: 首先将每个点之间的最短距离求出(bfs),A 或者 S作为起点跑bfs,这样最短距离就求出 ...

  7. windebug分析高cpu问题

    分析高CPU的关键是找到哪个线程是持续运行,占用CPU时间. 可以隔上两分钟连续抓两个dump文件,使用 !runaway 查看线程运行的时间 通过对比两个dump文件的线程时间,看看哪个线程运行的时 ...

  8. 20165320 实验一 java环境的熟悉

    实验内容与步骤 一.java开发环境的熟悉 1.建立一个有关自己学号的目录 2.在当前文件下编译一个带包Hello.java文件 3.代码内容 package sq; import java.util ...

  9. 渗透测试===kali linux的安装

    方法一: kali linux 安装在本地的vitural box 或者 wm ware中 方法二: 安装在移动硬盘或者储存卡中,插到电脑就能用

  10. openjudge-NOI 2.5-1789 算24

    题目链接:http://noi.openjudge.cn/ch0205/1789/ 题解: 并不是非常简单的搜索,需要考虑一些东西…… 首先有运算符优先级的限制,还有括号,数字的顺序也可以调整,如果只 ...