HDU - 4035 循环型概率DP
题解待会在上
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 2e4+11;
const double eps = 1e-10;
typedef long long ll;
const int oo = 0x3f3f3f3f;
const double ERR = -2.3333;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[maxn<<1],nxt[maxn<<1],head[maxn],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v){
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
swap(u,v);
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
}
double A[maxn],B[maxn],C[maxn],k[maxn],e[maxn];
bool isleaf(int u,int fa){
int cnt=0;
erep(i,u){
int v=to[i];
if(v!=fa)cnt++;
if(cnt==1)return 0;
}
return 1;
}
void DP(int u,int fa){
if(A[u]!=ERR)return;
if(isleaf(u,fa)){
A[u]=k[u];
B[u]=(1.0-e[u]-k[u]);
C[u]=(1.0-e[u]-k[u]);
return;
}
int num=0;
double sumA=0,sumB=0,sumC=0;
erep(i,u){
int v=to[i];
num++;
if(v==fa)continue;
DP(v,u);
sumA+=A[v];
sumB+=B[v];
sumC+=C[v];
}
int i=u;
A[i]=(k[i]+(1-k[i]-e[i])/num*sumA)/(1.0-(1.0-k[i]-e[i])/num*sumB);
B[i]=(1.0-k[i]-e[i])/num/(1.0-(1.0-k[i]-e[i])/num*sumB);
C[i]=((1.0-k[i]-e[i])+(1.0-k[i]-e[i])/num*sumC)/(1.0-(1.0-k[i]-e[i])/num*sumB);
}
int main(){
int T=read(),kase=0;
while(T--){
init();
int n=read();
rep(i,1,n){
A[i]=B[i]=C[i]=ERR;
}
rep(i,1,n-1){
int u=read();
int v=read();
add(u,v);
}
rep(i,1,n){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100.0;
e[i]/=100.0;
}
DP(1,0);
double ans=(fabs(1.0-A[1])<eps?ERR:C[1]/(1.0-A[1]));
printf("Case %d: ",++kase);
if(ans==ERR) printf("impossible\n");
else printf("%.6lf\n",ans);
}
return 0;
}
HDU - 4035 循环型概率DP的更多相关文章
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- hdu 4035 Maze 概率DP
题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) ...
- HDU 4035 Maze 概率DP 搜索
解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...
- HDU 4035Maze(概率DP)
HDU 4035 Maze 体会到了状态转移,化简方程的重要性 题解转自http://blog.csdn.net/morgan_xww/article/details/6776947 /** dp ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU - 1099 - Lottery - 概率dp
http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...
- HDU 4405 【概率dp】
题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...
- HDU 4576 Robot(概率dp)
题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...
随机推荐
- 485. Max Consecutive Ones最长的连续1的个数
[抄题]: Given a binary array, find the maximum number of consecutive 1s in this array. Example 1: Inpu ...
- Docker学习笔记_网上资源参考
Docker学习,网上资源参考 1.菜鸟教程: http://www.runoob.com ...
- 面试题:Java必知必会:异常机制详解 背1
一.Java异常概述 在Java中,所有的事件都能由类描述,Java中的异常就是由java.lang包下的异常类描述的. Trowable是所有异常的超类. 他的常用方法printStackTrec ...
- 2.8.3 并发下诡异的HashMap
package 第二章.并发下诡异的HashMap; import org.junit.Test; import java.util.HashMap;import java.util.Map;impo ...
- Python基础入门-While循环
讲完了for循环我们继续来看第二个循环,那就是while循环,while循环和for循环虽然都是循环,但是有着本质的不同.我们先来看下她们之间的区别和联系: While循环和for循环区别: 1.fo ...
- 代理(Proxy)模式
代理模式(Proxy):为其他对象提供一种代理以控制对这个对象的反问. * 抽象主题角色(Subject):声明了真实主题和代理主题的共同接口,这样一来在任何使用真实主题的地方都可以使用代理主题. * ...
- aspx 与 ashx cs
1. aspx 与 ashx 我们知道 aspx :继承自 System.Web.UI.Page 然而Page:IHttpHandler public class Page : TemplateCon ...
- window phone 8资源管理器打开文件
一.打开安装包里面文件: StorageFolder sf = Package.Current.InstalledLocation;//ApplicationData.Current.LocalFol ...
- 打包发布到NPM并通过CDN访问
本文主要讲述基于webpack编写js包文件后上传到npm,并通过cdn进行访问. 创建项目 在自己新建的文件夹下执行如下代码: npm init name: (mtmap) version: (1. ...
- css css预处理器
CSS预处理器(css preprocessor) 1.less: 2.sass: 3.scss: 4.stylus 参考: http://hao.jser.com/archive/2507/ htt ...