题解待会在上

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 2e4+11;
const double eps = 1e-10;
typedef long long ll;
const int oo = 0x3f3f3f3f;
const double ERR = -2.3333;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[maxn<<1],nxt[maxn<<1],head[maxn],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v){
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
swap(u,v);
to[tot]=v;nxt[tot]=head[u];head[u]=tot++;
}
double A[maxn],B[maxn],C[maxn],k[maxn],e[maxn];
bool isleaf(int u,int fa){
int cnt=0;
erep(i,u){
int v=to[i];
if(v!=fa)cnt++;
if(cnt==1)return 0;
}
return 1;
}
void DP(int u,int fa){
if(A[u]!=ERR)return;
if(isleaf(u,fa)){
A[u]=k[u];
B[u]=(1.0-e[u]-k[u]);
C[u]=(1.0-e[u]-k[u]);
return;
}
int num=0;
double sumA=0,sumB=0,sumC=0;
erep(i,u){
int v=to[i];
num++;
if(v==fa)continue;
DP(v,u);
sumA+=A[v];
sumB+=B[v];
sumC+=C[v];
}
int i=u;
A[i]=(k[i]+(1-k[i]-e[i])/num*sumA)/(1.0-(1.0-k[i]-e[i])/num*sumB);
B[i]=(1.0-k[i]-e[i])/num/(1.0-(1.0-k[i]-e[i])/num*sumB);
C[i]=((1.0-k[i]-e[i])+(1.0-k[i]-e[i])/num*sumC)/(1.0-(1.0-k[i]-e[i])/num*sumB); }
int main(){
int T=read(),kase=0;
while(T--){
init();
int n=read();
rep(i,1,n){
A[i]=B[i]=C[i]=ERR;
}
rep(i,1,n-1){
int u=read();
int v=read();
add(u,v);
}
rep(i,1,n){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100.0;
e[i]/=100.0;
}
DP(1,0);
double ans=(fabs(1.0-A[1])<eps?ERR:C[1]/(1.0-A[1]));
printf("Case %d: ",++kase);
if(ans==ERR) printf("impossible\n");
else printf("%.6lf\n",ans);
}
return 0;
}

HDU - 4035 循环型概率DP的更多相关文章

  1. HDU 4035 Maze 概率dp,树形dp 难度:2

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...

  2. hdu 4035 Maze 概率DP

        题意:    有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,    从结点1出发,开始走,在每个结点i都有3种可能:        1.被杀死,回到结点1处(概率为ki)      ...

  3. HDU 4035 Maze 概率DP 搜索

    解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...

  4. HDU 4035Maze(概率DP)

    HDU 4035   Maze 体会到了状态转移,化简方程的重要性 题解转自http://blog.csdn.net/morgan_xww/article/details/6776947 /** dp ...

  5. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  6. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  7. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  8. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  9. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

随机推荐

  1. 什么是Kali Linux?

    什么是Kali Linux? Kali Linux是一个基于Debian的Linux发行版,旨在实现高级渗透测试和安全审计.Kali包含数百种工具,适用于各种信息安全任务,如渗透测试,安全研究,计算机 ...

  2. wordpress+lnmp出现 404 Not Found nginx

    在本地使用Apache,因此进行重写规则是.htaccess文件,但在Nginx服务器中此文件不起作用. 只需在网站的虚拟机配置文件中添加如下 location / { if (-f $request ...

  3. dev初识 拖动分组

    1.前台代码 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm ...

  4. IIS身份验证知识摘录

    IIS 身份验证 ASP.NET 身份验证分为两个步骤.首先,Internet 信息服务 (IIS) 对用户进行身份验证,并创建一个 Windows 令牌来表示该用户.IIS 通过查看 IIS 元数据 ...

  5. jQuery 选择器2

    jQuery 选择器 选择器 实例 选取 * $("*") 所有元素 #id $("#lastname") id="lastname" 的元 ...

  6. 编写高质量代码改善C#程序的157个建议——建议52:及时释放资源

    建议52:及时释放资源 垃圾回收机制自动为我们隐式地回收了资源(垃圾回收器会自动调用终结器),那我们为什么要主动释放资源呢? private void buttonOpen_Click(object ...

  7. wpf path语法

    http://www.cnblogs.com/HQFZ/p/4452548.html WPF系列 Path表示语法详解(Path之Data属性语法)

  8. MongoDB整理笔记のReplica Sets

    MongoDB支持在多个机器中通过异步复制达到故障转移和实现冗余.多机器中同一时刻只有一台机器是用于写操作,正因为如此,MongoDB提供了数据一致性的保障.而担当primary角色的机器,可以把读的 ...

  9. Android Service基本知识总结(一)

    一.简介 Service是Android系统的后台服务组件,适用于开发无界面.长时间运行的应用功能Service特点如下: 没有用户界面 不会轻易被Android系统终止 在系统资源恢复后Servic ...

  10. 用ActionBar的ActionProvider的时候报错:cannot be cast to android.view.ActionProvider

    在用ActionBar的自定义ActionProvider的时候有时候会遇到以下的报错: