浅谈\(Manacher\):https://www.cnblogs.com/AKMer/p/10431603.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2342

假设我已经将原字符串的\(p\)数组求好了。

双倍回文肯定是#\(W\)#\(W^R\)#\(W\)#\(W^R\)#

我们枚举中间一个#,求在它的回文半径的一半以内最靠前的第一个满足\(i+p_i-1\geqslant pos\)的第一个#,那么肯定第三个#也是存在的,然后用这个更新答案即可。

怎么快速找到第一个#呢?并查基优化即可。如果一个位置的\(i+p_i-1< pos\)那么显然这个位置也不可能作为后面的#号的第一个#,直接用并查基把他和下一个位置合起来即可。

时间复杂度:\(O(\alpha n)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e6+5; int n,ans;
char s[maxn];
int p[maxn],fa[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int find(int x) {
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
} int main() {
n=read();
scanf("%s",s+1);
for(int i=n;i;i--)
s[i<<1]=s[i],s[(i<<1)-1]='#';
s[n<<1|1]='#',s[0]='$',n=n<<1|1;
int id=0,mx=0;
for(int i=1;i<=n;i+=2)fa[i]=i;
for(int i=1;i<=n;i++) {
p[i]=i<=mx?min(mx-i+1,p[(id<<1)-i]):1;
while(s[i-p[i]]==s[i+p[i]])p[i]++;
if(i+p[i]-1>mx)id=i,mx=i+p[i]-1;
if(s[i]=='#'&&p[i]>=5) {
int st=i-p[i]/2;if(st%2==0)st|=1;
for(int j=find(st);j<=i;j=find(j+2))
if(j+p[j]<=i) fa[j]=find(j+2);
else {ans=max(ans,(i-j)<<1);break;}
}
}
printf("%d\n",ans);
return 0;
}

根据洛谷一大佬的题解,此题有\(O(n)\)做法,只需要在\(mx\)被更新的时候枚举旧的\(mx\)到新的\(mx\)之间的点做双倍回文的右端点,新的\(id\)作为双倍回文的中点,然后判断对称过去是不是个回文即可。这样子做双倍回文肯定会被枚举到,并且枚举的总时间就是\(mx\)的改变量。

时间复杂度:\(O(n)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e6+5; int n,ans;
int p[maxn];
char s[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} int main() {
n=read();
scanf("%s",s+1);
for(int i=n;i;i--)
s[i<<1]=s[i],s[(i<<1)-1]='#';
s[n<<1|1]='#',s[0]='$',n=n<<1|1;
int id=0,mx=0;
for(int i=1;i<=n;i++) {
p[i]=i<=mx?min(mx-i+1,p[(id<<1)-i]):1;
while(s[i-p[i]]==s[i+p[i]])p[i]++;
if(i+p[i]-1>mx) {
if(s[i]=='#') {
int st=mx+1;if(s[st]!='#')st++;
for(int j=st;j<=i+p[i]-1;j+=2) {
int pos=i+(j-i)/2;pos=(i<<1)-pos;
if(s[pos]=='#'&&p[pos]+pos-1>=i)ans=max(ans,j-i);
}
}
id=i,mx=i+p[i]-1;
}
}
printf("%d\n",ans);
return 0;
}

BZOJ2342:[SHOI2011]双倍回文的更多相关文章

  1. BZOJ2342 Shoi2011 双倍回文 【Manacher】

    BZOJ2342 Shoi2011 双倍回文 Description Input 输入分为两行,第一行为一个整数,表示字符串的长度,第二行有个连续的小写的英文字符,表示字符串的内容. Output 输 ...

  2. BZOJ2342: [Shoi2011]双倍回文

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 923  Solved: 317[Submit][Status ...

  3. BZOJ2342[Shoi2011]双倍回文——回文自动机

    题目描述 输入 输入分为两行,第一行为一个整数,表示字符串的长度,第二行有个连续的小写的英文字符,表示字符串的内容. 输出 输出文件只有一行,即:输入数据中字符串的最长双倍回文子串的长度,如果双倍回文 ...

  4. bzoj千题计划306:bzoj2342: [Shoi2011]双倍回文 (回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2342 解法一: 对原串构建回文自动机 抽离fail树,从根开始dfs 设len[x]表示节点x表示 ...

  5. BZOJ2342:[SHOI2011]双倍回文(Manacher)

    Description   Input 输入分为两行,第一行为一个整数,表示字符串的长度,第二行有个连续的小写的英文字符,表示字符串的内容. Output 输出文件只有一行,即:输入数据中字符串的最长 ...

  6. [BZOJ2342] [Shoi2011]双倍回文(manacher)

    传送门 manacher...... 先跑一边manacher是必须的 然后枚举双倍回文串的对称轴x 把这个双倍回文串分成4段,w wR w wR 发现,只有当 y <= x + p[x] / ...

  7. bzoj2342: [Shoi2011]双倍回文 pam

    题解:先建pam,然后在fail树上dfs,从上到下的链如果有当前长度最远回文串的一半,那么更新答案 //#pragma GCC optimize(2) //#pragma GCC optimize( ...

  8. 【BZOJ-2342】双倍回文 Manacher + 并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1799  Solved: 671[Submit][Statu ...

  9. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  10. 2018.06.30 BZOJ 2342: [Shoi2011]双倍回文(manacher)

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 128 MB Description Input 输入分为两行,第一行为一个整数,表示字符串 ...

随机推荐

  1. Linux Shell编程 cut、print命令

    cut命令:查找符合条件的列 cut  命令是在文件中提取符合条件的列,虽然 cut 命令用于提取符合条件的列,但是也要一行一行地进行数据提取.也就是说,先要读取文本的第一行数据,在此行中判断是否有符 ...

  2. 写给后端程序员的HTTP缓存原理介绍--怎样决定一个资源的Cache-Control策略呢

    通过Internet获取资源既缓慢,成本又高.为此,Http协议里包含了控制缓存的部分,以使Http客户端可以缓存和重用以前获 取的资源,从而优化性能,提升体验.虽然Http中关于缓存控制的部分,随着 ...

  3. 各种排序算法-用Python实现

    冒泡排序 # 冒泡排序 def bubble_sort(l): length = len(l) # 外层循环 length遍,内层循环少一遍 while length: for j in range( ...

  4. vRO Extend VirtualDisk Workflow

    https://vbombarded.wordpress.com/2015/02/20/vrealize-orchestrator-extend-virtual-disk-workflow/ var ...

  5. java filter 实现权限控制

    import javax.servlet.*; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.Http ...

  6. Qt 安装事件过滤器installEventFilter

    Qt 安装事件过滤器installEventFilter (2013-01-28 14:29:18) 转载▼   分类: 工作笔记 Qt的事件模型一个强大的功能是一个QObject对象能够监视发送其他 ...

  7. Spring boot学习整理

    目录: Springboot结合hbase Springboot结合elasticsearch Springboot结合RestTemplate处理Http请求 Springboot的maven相关 ...

  8. AODH: ALARM EVENTS IN OPENSTACK

    AODH是从Ceilometer分离出来的一个子项目,开始于OpenStack Liberty,用来提供alarm机制. 除了之前Ceilometer有的基于sample的警报机制,AODH还添加了基 ...

  9. sqlserver设置具体的访问权限

    为具体的用户设置具体的访问权限 收藏 use 你的库名 go --新增用户 exec sp_addlogin 'test' --添加登录 exec sp_grantdbaccess N'test' - ...

  10. 只有*.mdf 如何附加数据库到MSSQL

        下载的webform 项目,App_Data文件夹中 只有*.mdf,无*.ldf日志文件. 直接在MSSQL企业管理中 附加数据库  提示附加失败. 新建一个与要附加的数据库同名的数据库,然 ...