http://acm.hdu.edu.cn/showproblem.php?pid=1051

Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:

(a) The setup time for the first wooden stick is 1 minute. 
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.

You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).

 
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
 
Output
The output should contain the minimum setup time in minutes, one per line.
 
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
 
Sample Output
2
1
3
 
题解:贪心 先排序
时间复杂度:$O(N ^ 2 + N * logN)$
代码:

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. const int maxn = 1e5 + 10;
  5. int N;
  6.  
  7. struct Node {
  8. int l;
  9. int w;
  10. int flag;
  11. }node[maxn];
  12.  
  13. bool cmp(const Node& a, const Node& b) {
  14. return a.l == b.l ? a.w < b.w : a.l < b.l;
  15. }
  16.  
  17. int main() {
  18. int T;
  19. scanf("%d", &T);
  20. while(T --) {
  21. memset(node, 0, sizeof(node));
  22. scanf("%d", &N);
  23. for(int i = 1; i <= N; i ++) {
  24. scanf("%d%d", &node[i].l, &node[i].w);
  25. node[i].flag = 0;
  26. }
  27.  
  28. int cnt = 0;
  29. sort(node + 1, node + 1 + N, cmp);
  30. for (int k = 1; k <= N;)
  31. {
  32. cnt ++;
  33. int L = 0, W = 0;
  34. for (int i = 1; i <= N; i ++) {
  35. if (!node[i].flag)
  36. if (node[i].l >= L && node[i].w >= W) {
  37. node[i].flag = 1;
  38. L = node[i].l;
  39. W = node[i].w;
  40. k ++;
  41. }
  42. }
  43. }
  44. printf("%d\n", cnt);
  45. }
  46. return 0;
  47. }

  

HDU 1005 Wooden Sticks的更多相关文章

  1. HDU 1051 Wooden Sticks (贪心)

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. HDU 1051 Wooden Sticks 贪心||DP

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. HDU - 1051 Wooden Sticks 贪心 动态规划

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)    ...

  4. hdu 1051:Wooden Sticks(水题,贪心)

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. HDU 1051 Wooden Sticks

    题意: 有 n 根木棒,长度和质量都已经知道,需要一个机器一根一根地处理这些木棒. 该机器在加工过程中需要一定的准备时间,是用于清洗机器,调整工具和模板的. 机器需要的准备时间如下: 1.第一根需要1 ...

  6. HDU 1051 Wooden Sticks【LIS】

    题意:给出n个木头的重量wi,长度li,如果满足w[i+1]>=w[i]且l[i+1]>=l[i],则不用耗费另外的加工时间,问至少需要多长时间加工完这些木头. 第一次做这一题目也没有做出 ...

  7. HDU 1051 Wooden Sticks 造木棍【贪心】

    题目链接>>> 转载于:https://www.cnblogs.com/Action-/archive/2012/07/03/2574800.html  题目大意: 给n根木棍的长度 ...

  8. HDU 1051 Wooden Sticks 贪心题解

    本题一看就知道是最长不减序列了,一想就以为是使用dp攻克了. 只是那是个错误的思路. 我就动了半天没动出来.然后看了看别人是能够使用dp的,只是那个比較难证明其正确性,而其速度也不快.故此并非非常好的 ...

  9. hdu 1051 wooden sticks (贪心+巧妙转化)

    #include <iostream>#include<stdio.h>#include<cmath>#include<algorithm>using ...

随机推荐

  1. 开发一个c#的数据库连接池

    c#操作数据库是一个经典,用习惯了以后真感觉不错,很简单的.现在很多关系数据库都支持c#.c#的ADO.NET规范都遵守. 对于一般的设置,ADO.NET都放在数据库连接字符串上.比如池化,连接超时等 ...

  2. fastRPC升级

    根据fastRPC的应用测试,用DB操作发布服务测试,对已经存在的问题进行升级; 主要修改内容: 1.添加自定义加载器,根据配置文件,允许设置目录,放置第三方jar包,解决打包问题 2.默认情况,服务 ...

  3. noip2018 洛谷 P1969积木大赛

    1 //一定不要忘记这句话 “连续区间 ”!! #include<bits/stdc++.h> using namespace std; int main(){ int n, h;//n是 ...

  4. Linux常用文档操作命令--1

    1.查看目录下的文档 a) ls(list):查看目录下的所有文档或者文档的信息. 命令行:ls [-a][-A] [-f][-F][-h][-l][-r][-R][-S][-t] 目录名称  //注 ...

  5. js继承的几种方法和es6继承方法

        一.原型链继     1.基本思想     利用原型链来实现继承,超类的一个实例作为子类的原型     2.具体实现     function F() {}     //原型属性,原型方法: ...

  6. Java小功能大杂烩

    生成UUID: import java.util.UUID; public class ProductUUID { // 随机返回前十位的UUID public static String getUU ...

  7. php 无限参数方法

    在很多项目开发中经常会用到共用方法但是参数不固定,每个参数都创建一遍阅读性不好,后期维护也麻烦,PHP有获取传入参数的方法,记录参考一下.这里有两个方法 <?php 方法一: #不指定参数个数方 ...

  8. ElasticSearch 安装配置

    1.   Elasticsearch5.5.2安装 1.1.Elasticsearch安装步骤 #安装之前需安装java 环境,并配置JAVA_HOME环境变量 #直接下载Elasticsearch- ...

  9. admin添加用户时报错:(1452, 'Cannot add or update a child row: a foreign key constraint fails (`mxonline`.`django_admin_l

    在stackoverflow找到答案: DATABASES = { 'default': { ... 'OPTIONS': { "init_command": "SET ...

  10. JAVA 反射之Method

    ★ Method没有构造器,只能通过Class获取. 重点方法: class.getDeclaredMethods():获取所有方法. class.getDeclaredMethod(String n ...