题意:求区间内正约数最大的数。

原理:唯一分解定义(又称算术基本定理),定义如下:

  任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积  ,这里  均为质数,其诸指数  是正整数。这样的分解称为

  

的标准分解式。(取自百度百科)

根据原理,正约数数量 = (1+a1)(1+a2)..(1+an)

因此我们需要先求出所有素数,进而求出a1,a2,..an的大小。

原题给的数字范围是1<=L<=U<=10^9,假如要全部算一遍需要很长时间。那么可能最大的正约数是多少呢?

回想我们所用的判断素数的算法(第五行到第十二行),最大可能的正约数不会超过根号n。求得n大约是31622。

然后我们就可以把1<=n<=31622内的素数打表来加速我们的计算。

完整代码如下:

 #include <bits/stdc++.h>
using namespace std;
vector<int> prime;
//
int is_prime(int n)
{
int k = floor(sqrt(n)+0.5);
for(int i = ; i <= k; i++){
if(n%i==)return ;
}
return ;
}
int divinum(int n){
int sum = ;
unsigned k = ;
while(n>&&k<prime.size()){
int t = ;
while(n%prime[k]==){
n/=prime[k];
t++;
}
k++;
sum*=t;
}
return sum;
}
int main(){
int n;
for(int i = ; i <= ; i++){
if(is_prime(i))
prime.push_back(i);
}
cin >> n;
while(n--){
int L, U;
cin >> L >> U;
int max_factor = ;
max_factor = ;
int max_num = ;
for(int i = L; i <= U; i++){
int k = divinum(i);
if(k > max_factor){
max_factor = k;
max_num =i;
}
}
printf("Between %d and %d, %d has a maximum of %d divisors.\n",L,U,max_num,max_factor);
}
return ;
}

Uva 294 Divisors(唯一分解定理)的更多相关文章

  1. UVa 294 - Divisors 解题报告 c语言实现 素数筛法

    1.题目大意: 输入两个整数L.H其中($1≤L≤H≤10^9,H−L≤10000$),统计[L,H]区间上正约数最多的那个数P(如有多个,取最小值)以及P的正约数的个数D. 2.原理: 对于任意的一 ...

  2. UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】

    Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an int ...

  3. UVA 294 - Divisors 因子个数

    Mathematicians love all sorts of odd properties of numbers. For instance, they consider 945 to be an ...

  4. UVA - 294 Divisors (约数)(数论)

    题意:输入两个整数L,U(1<=L<=U<=109,U-L<=10000),统计区间[L,U]的整数中哪一个的正约数最多.如果有多个,输出最小值. 分析: 1.求一个数的约数, ...

  5. 紫书 例题 10-4 UVa 10791(唯一分解定理)

    首先分解,然后可以发现同一个因子ai不能存在于两个以上的数中 因为求的是最小公倍数,如果有的话就可以约掉 所以数字必然由ai的pi次方的乘积组成,那么显然,在 a最小为2,而b大于2的情况下a*b&g ...

  6. 紫书 例题 10-3 UVa 10375 (唯一分解定理)

    这道题感觉非常的秀 因为结果会很大,所以就质因数分解分开来算 非常的巧妙! #include<cstdio> #include<vector> #include<cstr ...

  7. UVA 294 294 - Divisors (数论)

    UVA 294 - Divisors 题目链接 题意:求一个区间内,因子最多的数字. 思路:因为区间保证最多1W个数字,因子能够遍历区间.然后利用事先筛出的素数求出质因子,之后因子个数为全部(质因子的 ...

  8. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  9. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

随机推荐

  1. Redis分布式锁的正确实现方式(Java版)

    前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...

  2. Java并发编程:线程封闭和ThreadLocal详解

    转载请标明出处: http://blog.csdn.net/forezp/article/details/77620769 本文出自方志朋的博客 什么是线程封闭 当访问共享变量时,往往需要加锁来保证数 ...

  3. BionicApi 学习笔记

    1.内存管理 malloc, realloc, free new, delete2.文件输入操作 fopen, fwrite, fputs, fputc, fprintf, fflush fread, ...

  4. c#数据库连接池

    因为使用习惯的问题,我封装了一个数据库连接池Hikari,这是我自定义的数据库连接池.因为c#的连接池按照规范的ADO.NET里面实现定义的,由数据库官方提供,但是实现方式就不知道了,反正没有看出来, ...

  5. LVS NAT,DR,TUN三种负载原理

    负载均衡简单介绍 用通俗的话来说负载均衡,就是通过不同的调度机制将用户的请求分派到后端不同的服务器.缓解服务器的请求压力,实现负载均衡的方案有多种,下面简单说说了解的几种方式: DNS 负载:利用DN ...

  6. Linux分享笔记:系统状态检测命令小结

    作为一名合格的运维人员,要能很好地了解Linux服务器,要能熟练查看Linux系统的运行状态.以下是常用到的Linux系统状态检测命令. 1. ifconfig:用于获取网卡配置与网络状态等信息.通常 ...

  7. javascript--BOM的onload事件和onunload事件

    1.onload事件 onload,页面加载后执行,所谓页面加载完成,指页面上所有的元素创建完毕,引用的所有的外部资源(js.css.图片)等下载完毕. 所以onload执行的比较晚,因为如果页面上有 ...

  8. php面向对象基础知识整理之类中的属性和方法的使用

    <?php /** * class Index * 类包含什么 * 1.创建类 * 2.类的属性和类中方法 * 3.类中访问修饰符 * 4.类的封装.继承.多态 */ // 创建类,创建的类名是 ...

  9. C语言Windows程序开发—CreateWindow函数介绍【第03天】

    (一)CreateWindow函数的参数介绍: HWND CreateWindow( LPCTSTR lpClassName, //Windows窗口中预定义的控件结构体,包括:BUTTON(按钮), ...

  10. stm32+lwip(五):以太网帧发送测试

    我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...