time limit per test 2 seconds

memory limit per test 256 megabytes

input standard input

output standard output

The annual college sports-ball tournament is approaching, which for trademark reasons we'll refer to as Third Month Insanity. There are a total of 2N teams participating in the tournament, numbered from 1 to 2N. The tournament lasts N rounds, with each round eliminating half the teams. The first round consists of 2N - 1 games, numbered starting from 1. In game i, team 2·i - 1 will play against team 2·i. The loser is eliminated and the winner advances to the next round (there are no ties). Each subsequent round has half as many games as the previous round, and in game i the winner of the previous round's game 2·i - 1 will play against the winner of the previous round's game2·i.

Every year the office has a pool to see who can create the best bracket. A bracket is a set of winner predictions for every game. For games in the first round you may predict either team to win, but for games in later rounds the winner you predict must also be predicted as a winner in the previous round. Note that the bracket is fully constructed before any games are actually played. Correct predictions in the first round are worth 1 point, and correct predictions in each subsequent round are worth twice as many points as the previous, so correct predictions in the final game are worth 2N - 1 points.

For every pair of teams in the league, you have estimated the probability of each team winning if they play against each other. Now you want to construct a bracket with the maximum possible expected score.

Input

Input will begin with a line containing N (2 ≤ N ≤ 6).

2N lines follow, each with 2N integers. The j-th column of the i-th row indicates the percentage chance that team i will defeat team j, unless i = j, in which case the value will be 0. It is guaranteed that the i-th column of the j-th row plus the j-th column of the i-th row will add to exactly 100.

Output

Print the maximum possible expected score over all possible brackets. Your answer must be correct to within an absolute or relative error of 10 - 9.

Formally, let your answer be a, and the jury's answer be b. Your answer will be considered correct, if .

Examples

input

2
0 40 100 100
60 0 40 40
0 60 0 45
0 60 55 0

output

1.75

input

3
0 0 100 0 100 0 0 0
100 0 100 0 0 0 100 100
0 0 0 100 100 0 0 0
100 100 0 0 0 0 100 100
0 100 0 100 0 0 100 0
100 100 100 100 100 0 0 0
100 0 100 0 0 100 0 0
100 0 100 0 100 100 100 0

output

12

input

2
0 21 41 26
79 0 97 33
59 3 0 91
74 67 9 0

output

3.141592

Note

In the first example, you should predict teams 1 and 4 to win in round 1, and team 1 to win in round 2. Recall that the winner you predict in round 2 must also be predicted as a winner in round 1.

【翻译】2n个人参加比赛。相邻两个人决出胜负进入下一轮比赛(所以共有n轮)。输出p[i][j]表示i在比赛中战胜j的概率(p[j][i]=1-p[i][j])。每一轮你可以给两两对决的选手其中之一下赌注,如果该选手胜利那么将获得2k的钱(k表示当前为第k轮)。求获得最优收益的期望值。

题解:
     ①期望动态规划。首先可以想到需要表示这一场比赛哪个人赢了。

     ②以dfs的形式降到最底层,g[i][j]表示二叉树节点i(代表了一个区间)上j成为最终胜利者的概率,f[i][j]表示上述状态下的最有收益期望值。

     ③g的转移即枚举j最后和哪些人对决并胜出。

     ④f的转移即j胜出的概率乘上收益并加上所有和j比赛的人中之前的最优期望收益值。

#include<stdio.h>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1003;int k,n;
double p[N][N],f[N][N],g[N][N],ans;
void dfs(int u,int l,int r)
{
if(l==r){f[u][l]=0;g[u][l]=1;return;}
int M=l+r>>1;dfs(u<<1,l,M);dfs(u<<1|1,M+1,r); go(i,1,M)go(j,M+1,n)g[u][i]+=g[u<<1][i]*g[u<<1|1][j]*p[i][j];
go(i,M+1,n)go(j,1,M)g[u][i]+=g[u<<1|1][i]*g[u<<1][j]*p[i][j];
go(i,1,M)go(j,M+1,n)f[u][i]=max(f[u][i],g[u][i]*(r-l+1)/2+f[u<<1][i]+f[u<<1|1][j]);
go(i,M+1,n)go(j,1,M)f[u][i]=max(f[u][i],g[u][i]*(r-l+1)/2+f[u<<1|1][i]+f[u<<1][j]);
}
int main()
{
scanf("%d",&k);n=1<<k;
go(i,1,n)go(j,1,n)scanf("%lf",&p[i][j]),p[i][j]/=100;
dfs(1,1,n);go(i,1,n)ans=max(ans,f[1][i]);printf("%.10lf\n",ans);
return 0;
}//Paul_Guderian

【CF MEMSQL 3.0 D. Third Month Insanity】的更多相关文章

  1. 【CF MEMSQL 3.0 B. Lazy Security Guard】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  2. 【CF MEMSQL 3.0 A. Declined Finalists】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  3. 【CF MEMSQL 3.0 E. Desk Disorder】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  4. 【CF MEMSQL 3.0 C. Pie Rules】

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. 【CF edu 30 C. Strange Game On Matrix】

    time limit per test 1 second memory limit per test  256 megabytes input standard input output standa ...

  6. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  7. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  8. B. Lost Number【CF交互题 暴力】

    B. Lost Number[CF交互题 暴力] This is an interactive problem. Remember to flush your output while communi ...

  9. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

随机推荐

  1. python学习之路2(程序的控制结构)

    1.程序的分支结构 1.1 单分支 if <条件>:                       例:guess = eval(input()) <语句块>          ...

  2. u-boot.bin生成过程分析

    ELF格式“u-boot”文件的生成规则如下,下面对应Makefile的执行过程分别分析各个依赖. $(obj)u-boot: depend version $(SUBDIRS) $(OBJS) $( ...

  3. Go语言获取本地IP地址

    最近要做一个向局域网内的所有设备广播发送信息,并接受设备的回复信息,回复信息包括设备的版本号,IP地址,运行工程名等信息.发现一个局域网内是可以有不同的网段的,但UDP广播只能是同一个网段的广播.又发 ...

  4. Black And White (DFS 训练题)

    G - Black And White ================================================================================ ...

  5. maven中settings文件的配置

    鉴于上一个博客写的maven打包,读者老爷们可能找不到settings文件的配置,这里专门附上settings文件的配置: 有的settings文件只含有一些空标签,需要手动去配置. <?xml ...

  6. Android面试收集录 文件存储

    1.请描述Android SDK支持哪些文件存储技术? 使用SharePreferences保存key-value类型的数据 流文件存储(openFileOutput+openFileInput或Fi ...

  7. 用 Qt 控制 Nikon 显微镜的电动物镜转盘

    用 Qt 控制 Nikon 显微镜的电动物镜转盘 最近的一个项目,用到了一台 Nikon 的金相显微镜,并且配了个电动的物镜转盘.为了控制这个电动物镜转盘,我折腾了差不多有4-5天.中间遇到了各种问题 ...

  8. Spring MVC: 环境搭建并实现简易的HelloWorld

    第一步:使用配置Tomcat服务器的Eclipse新建一个名为“TestSpringMVC”的web项目 第二步:将所使用的jar包复制到WEB-INF/lib目录下 第三步:在web.xml中配置D ...

  9. Java 图像处理框架-Marvin

    网上看到,摘录过来的,暂时还没涉足这方面的东西 Marvin 1.4.5 的插件接口支持处理多个图像作为输入,新的插件可通过多个图片来确认背景,新的插件可使用多个图片来合并相同场景. Marvin 是 ...

  10. 命令行下对apk签名

    l创建key,需要用到keytool.exe (位于jdk安装目录\bin目录下),使用产生的key对apk签名用到的是jarsigner.exe (位于jdk安装目录\bin目录下),把上两个软件所 ...