C. Gerald and Giant Chess
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on anh × w field,
and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs
to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the
rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells
(1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th
of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w)
— the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.

Sample test(s)
input
3 4 2
2 2
2 3
output
2
input
100 100 3
15 16
16 15
99 88
output
545732279

题目大意:给出一个棋盘为h*w,如今要从(1,1)到(h,w)。当中有n个黑点不能走,问有多少种可能从左上到右下(1,1和h,w永远是能够走的)

计算左上到右下的方法假设不考虑黑点的话,sum=C(h+w)(h)

由于存在黑点i(x,y),所以用所以计算从左上到黑点的方法有sum[i] = C(x+y)(x)。当中假设在黑点的左上还有黑点j(u,v),那么应该减去sum[j]*C(x-u+y-v)(y-u)。去掉全部在左上的黑点的影响就能够得到由左上到第i点的真正的方法数

从左上的第一个黑点。一直计算到右下(h,w)

注意:

1、C(h+w)(h)的数据非常大。C(h+w)(h) = (h+w)!/( h!*w! )。用数组fac记录下每一个数的阶乘

2、计算组合数的时候有除法,能够用逆元来做a/b%mod = a*(b^(mod-2))%mod。计算i的阶乘的逆元inv[i],第在对阶乘求逆元的方法还有inv[ fac[i] ] = inv[ fac[i+1] ]*(i+1)%mod ,这种方法仅对连续的阶乘有效。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define LL __int64
const LL MOD = 1e9+7 ;
struct node{
LL x , y ;
}p[3100];
LL h , w , n ;
LL fac[310000] , inv[310000] ;
LL sum[3100] ;
int cmp(node a,node b) {
return a.x < b.x || (a.x == b.x && a.y < b.y) ;
}
LL pow(LL x,LL k) {
LL ans = 1 ;
while( k ) {
if( k&1 ) ans = ans*x%MOD ;
k = k>>1 ;
x = (x*x)%MOD ;
}
return ans ;
}
void init() {
LL i , j , c ;
fac[0] = inv[0] = 1 ;
for(i = 1 ; i <= h+w ; i++)
fac[i] = (fac[i-1]*i)%MOD ;
c = max(h,w) ;
inv[c] = pow(fac[c],MOD-2) ;
for(i = c-1 ; i > 0 ; i--) {
inv[i] = inv[i+1]*(i+1)%MOD ;
}
}
int main() {
LL i , j ;
LL ans ;
while( scanf("%I64d %I64d %I64d", &h, &w, &n) != EOF ) {
init() ;
for(i = 0 ; i < n ; i++)
scanf("%I64d %I64d", &p[i].x, &p[i].y) ;
p[n].x = h ; p[n++].y = w ;
sort(p,p+n,cmp) ;
int x1 , y1 , x2 , y2 ;
for(i = 0 ; i < n ; i++) {
x1 = p[i].x-1 ; y1 = p[i].y-1 ;
sum[i] = fac[x1+y1]*inv[x1]%MOD*inv[y1]%MOD ;
for(j = 0 ; j < i ; j++) {
if( p[j].x <= p[i].x && p[j].y <= p[i].y ) {
x2 = x1 - p[j].x+1 ; y2 = y1 - p[j].y+1 ;
sum[i] = (sum[i]-fac[x2+y2]*inv[x2]%MOD*inv[y2]%MOD*sum[j]%MOD)%MOD ;
if( sum[i] <= 0 ) sum[i] = (sum[i]+MOD)%MOD;
}
}
}
printf("%I64d\n", sum[n-1]) ;
}
return 0 ;
}

codeforces(559C)--C. Gerald and Giant Chess(组合数学)的更多相关文章

  1. CodeForces 559C Gerald and Giant Chess

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  3. Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP

    C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  4. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

  5. Gerald and Giant Chess

    Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  6. CF559C Gerald and Giant Chess

    题意 C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. E. Gerald and Giant Chess

    E. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes2015-09-0 ...

  8. Codeforces 559C Gerald and Giant Chess【组合数学】【DP】

    LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...

  9. Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)

    题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...

随机推荐

  1. centos6.8下安装部署LNMP(备注:nginx1.8.0+php5.6.10+mysql5.6.12)

    在平时运维工作中,经常需要用到LNMP应用框架.以下对LNMP环境部署记录下: 1)前期准备:为了安装顺利,建议先使用yum安装依赖库[root@opd ~]#yum install -y make ...

  2. CreatarGlobe实现多机立体显示方案(初稿)

    CreatarGlobe实现多机立体显示方案(初稿) 关键字 : 集群渲染 立体显示 大屏幕 边缘融合 多机同步 多机同步显示 关键字: 大屏幕投影融合系统解决方案 集群渲染 多机3D同步显示又称“集 ...

  3. JS组件系列——显示隐藏密码切换的jQuery插件

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  4. Node.js meitulu图片批量下载爬虫 1.05版(Final最终版)

    //====================================================== // https://www.meitulu.com图片批量下载Node.js爬虫1. ...

  5. [转载]Android开发者必须深入学习的10个应用开源项目

    [转载]Android开发者必须深入学习的10个应用开源项目 原文地址:Android开发者必须深入学习的10个应用开源项目(http://blog.sina.com.cn/s/blog_7b8a63 ...

  6. B9:备忘录模式 Memento

    在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可以将该对象恢复到原先保存的状态 UML: 示例代码: class Role { private $hp; pri ...

  7. 模式识别之Earley算法入门详讲

    引言:刚学习模式识别时,读Earley算法有些晦涩,可能是自己太笨.看了网上各种资料,还是似懂非懂,后来明白了,是网上的前辈们境界太高,写的最基本的东西还是非常抽象,我都领悟不了,所以决定写个白痴版的 ...

  8. 【DB2】DB2中rank(),dense_rank(),row_number()的用法

    1.准备测试数据 DROP TABLE oliver_1; ),SUB_NO ),SCORE int); ,,); ,,); ,,); ,,); ,,); ,,); 2.详解rank(),dense_ ...

  9. Scala 机器学习库

    自然语言处理 ScalaNLP-机器学习和数值计算库的套装 Breeze -Scala用的数值处理库 Chalk-自然语言处理库. FACTORIE-可部署的概率建模工具包.用Scala实现的软件库. ...

  10. 因DataTable的字段值为DBNull引发的异常

    1 问题重现 (1)新建项目DBNullExp.项目属性为"控制台应用程序": (2)在项目下新建数据集Schools(数据集文件的后缀名为.xsd): watermark/2/t ...