C. Gerald and Giant Chess
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on anh × w field,
and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs
to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the
rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells
(1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th
of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w)
— the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.

Sample test(s)
input
3 4 2
2 2
2 3
output
2
input
100 100 3
15 16
16 15
99 88
output
545732279

题目大意:给出一个棋盘为h*w,如今要从(1,1)到(h,w)。当中有n个黑点不能走,问有多少种可能从左上到右下(1,1和h,w永远是能够走的)

计算左上到右下的方法假设不考虑黑点的话,sum=C(h+w)(h)

由于存在黑点i(x,y),所以用所以计算从左上到黑点的方法有sum[i] = C(x+y)(x)。当中假设在黑点的左上还有黑点j(u,v),那么应该减去sum[j]*C(x-u+y-v)(y-u)。去掉全部在左上的黑点的影响就能够得到由左上到第i点的真正的方法数

从左上的第一个黑点。一直计算到右下(h,w)

注意:

1、C(h+w)(h)的数据非常大。C(h+w)(h) = (h+w)!/( h!*w! )。用数组fac记录下每一个数的阶乘

2、计算组合数的时候有除法,能够用逆元来做a/b%mod = a*(b^(mod-2))%mod。计算i的阶乘的逆元inv[i],第在对阶乘求逆元的方法还有inv[ fac[i] ] = inv[ fac[i+1] ]*(i+1)%mod ,这种方法仅对连续的阶乘有效。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define LL __int64
const LL MOD = 1e9+7 ;
struct node{
LL x , y ;
}p[3100];
LL h , w , n ;
LL fac[310000] , inv[310000] ;
LL sum[3100] ;
int cmp(node a,node b) {
return a.x < b.x || (a.x == b.x && a.y < b.y) ;
}
LL pow(LL x,LL k) {
LL ans = 1 ;
while( k ) {
if( k&1 ) ans = ans*x%MOD ;
k = k>>1 ;
x = (x*x)%MOD ;
}
return ans ;
}
void init() {
LL i , j , c ;
fac[0] = inv[0] = 1 ;
for(i = 1 ; i <= h+w ; i++)
fac[i] = (fac[i-1]*i)%MOD ;
c = max(h,w) ;
inv[c] = pow(fac[c],MOD-2) ;
for(i = c-1 ; i > 0 ; i--) {
inv[i] = inv[i+1]*(i+1)%MOD ;
}
}
int main() {
LL i , j ;
LL ans ;
while( scanf("%I64d %I64d %I64d", &h, &w, &n) != EOF ) {
init() ;
for(i = 0 ; i < n ; i++)
scanf("%I64d %I64d", &p[i].x, &p[i].y) ;
p[n].x = h ; p[n++].y = w ;
sort(p,p+n,cmp) ;
int x1 , y1 , x2 , y2 ;
for(i = 0 ; i < n ; i++) {
x1 = p[i].x-1 ; y1 = p[i].y-1 ;
sum[i] = fac[x1+y1]*inv[x1]%MOD*inv[y1]%MOD ;
for(j = 0 ; j < i ; j++) {
if( p[j].x <= p[i].x && p[j].y <= p[i].y ) {
x2 = x1 - p[j].x+1 ; y2 = y1 - p[j].y+1 ;
sum[i] = (sum[i]-fac[x2+y2]*inv[x2]%MOD*inv[y2]%MOD*sum[j]%MOD)%MOD ;
if( sum[i] <= 0 ) sum[i] = (sum[i]+MOD)%MOD;
}
}
}
printf("%I64d\n", sum[n-1]) ;
}
return 0 ;
}

codeforces(559C)--C. Gerald and Giant Chess(组合数学)的更多相关文章

  1. CodeForces 559C Gerald and Giant Chess

    C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  3. Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP

    C. Gerald and Giant Chess Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  4. 【题解】CF559C C. Gerald and Giant Chess(容斥+格路问题)

    [题解]CF559C C. Gerald and Giant Chess(容斥+格路问题) 55336399 Practice: Winlere 559C - 22 GNU C++11 Accepte ...

  5. Gerald and Giant Chess

    Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  6. CF559C Gerald and Giant Chess

    题意 C. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. E. Gerald and Giant Chess

    E. Gerald and Giant Chess time limit per test 2 seconds memory limit per test 256 megabytes2015-09-0 ...

  8. Codeforces 559C Gerald and Giant Chess【组合数学】【DP】

    LINK 题目大意 有一个wxh的网格,上面有n个黑点,问你从(1,1)走到(w,h)不经过任何黑点的方案数 思路 考虑容斥 先把所有黑点按照x值进行排序方便计算 \(dp_{i}\)表示从起点走到第 ...

  9. Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)

    题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...

随机推荐

  1. PostgreSQL配置文件--连接和认证

    1 连接和认证 CONNECTIONS AND AUTHENTICATION 1.1 连接 CONNECTIONS 1.1.1 listen_addresses 字符型 默认: listen_addr ...

  2. ylbtech-LanguageSamples-ConditionalMethods(条件方法)

    ylbtech-Microsoft-CSharpSamples:ylbtech-LanguageSamples-ConditionalMethods(条件方法) 1.A,示例(Sample) 返回顶部 ...

  3. 利用JS实现vue中的双向绑定

    Vue 已经是主流框架了 它的好处也不用多说,都已经是大家公认的了 那我们就来理解一下Vue的单向数据绑定和双向数据绑定 然后再使用JS来实现Vue的双向数据绑定 单向数据绑定 指的是我们先把模板写好 ...

  4. java中short、int、long、float、double取值范围

    一.分析基本数据类型的特点,最大值和最小值.1.基本类型:int 二进制位数:32包装类:java.lang.Integer最小值:Integer.MIN_VALUE= -2147483648 (-2 ...

  5. linux 压缩、解压缩及归档工具

    linux下主要的压缩.归档工具 compress/uncompress: .Z gzip/gunzip:  .gz bzip2/bunzip2: .bz2 xz/unxz: .xz zip/unzi ...

  6. [转载]Android开发者必须深入学习的10个应用开源项目

    [转载]Android开发者必须深入学习的10个应用开源项目 原文地址:Android开发者必须深入学习的10个应用开源项目(http://blog.sina.com.cn/s/blog_7b8a63 ...

  7. android Menory 小结

    不建议在Activity中使用static 变量,考虑使用Application.当然,static final例外 但Application也不要cache某个Activity使用的View,如果c ...

  8. 【Java】Java_08 字符型与布尔值

    1.字符型(2个字节) 单引号用来表示字符常量.例如‘A’是一个字符,它与“A”是不同的,“A”表示含有一个字符的字符串 char 类型用来表示在Unicode编码表中的字符 Unicode编码被设计 ...

  9. 神奇的canvas——点与线绘制的绚丽动画效果

    代码地址如下:http://www.demodashi.com/demo/11636.html 前言 之前在某网站上看到了一个canvas绘制的动画效果,虽然组成的元素很简单,只有点和线,但是视觉效果 ...

  10. Wp8滚动区域(ScrollViewer)控件的使用

    1. <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28" ...