tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp
背景
描述
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输出格式
测试样例1
输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出
67
取自http://www.cnblogs.com/TonyNeal/p/codevs1043.html;
时间复杂度:O(2n3),空间复杂度O(2n3),优化了一维。从n的四方优化至n的三方,是一个很大的进步。
#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define esp 1e-10
const int N=1e2+,M=1e6+,mod=1e9+,inf=1e9+;
int dp[N][N][N];
int mp[N][N];
int max(int x,int y,int z,int w,int u)
{
return max(u,max(max(x,y),max(z,w)));
}
int main()
{
int x,y,z,i,t;
scanf("%d",&x);
while()
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==&&v==&&w==)
break;
mp[u][v]=w;
}
for(i=;i<=*x;i++)
{
for(t=;t<=i&&t<=x;t++)
{
for(int j=;j<=i&&j<=x;j++)
dp[i][t][j]=max(dp[i][t][j],dp[i-][t-][j],dp[i-][t-][j-],dp[i-][t][j],dp[i-][t][j-])+((t==j)?mp[t][i-t+]:(mp[j][i-j+]+mp[t][i-t+]));
}
}
printf("%d\n",dp[*x][x][x]);
return ;
}
tyvj 1884 [NOIP2000T4]方格取数 || codevs 1043 dp的更多相关文章
- codevs_1043 方格取数(棋盘DP)
1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description ...
- HDU 1565 方格取数(1) 轮廓线dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...
- HRBUST - 1214 NOIP2000提高组 方格取数(多线程dp)
方格取数 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放人数字0.如下图所示(见样例 ,黄色和蓝色分别为两次走的路线,其中绿色的格子为黄色和蓝色共同走过的 ...
- P1004 方格取数(四维dp)
P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...
- P1004 方格取数——奇怪的dp
P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...
- hdu2167 方格取数 状态压缩dp
题意: 方格取数,八个方向的限制. 思路: 八个方向的不能用最大流了,四个的可以,八个的不能抽象成二分图,所以目测只能用dp来跑,dp[i][j]表示的是第i行j状态的最优,具体看 ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
- 方格取数(多线程dp,深搜)
https://www.luogu.org/problem/P1004 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): 某 ...
- 8786:方格取数 (多线程dp)
[题目描述] 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点.在走 ...
随机推荐
- js四则运算符
只有当加法运算时,其中一方是字符串类型,就会把另一个也转为字符串类型.其他运算只要其中一方是数字,那么另一方就转为数字.并且加法运算会触发三种类型转换:将值转换为原始值,转换为数字,转换为字符串. & ...
- springboot集成h2
h2数据库是常用的开源数据库,与HSQLDB类似,十分适合作为嵌入式数据库使用,其他的数据库大部分都需要安装独立的客户端和服务器端 h2的优势: (1)h2采用纯java编写,因此不受平台的限制 (2 ...
- .Net自带ChartControl报错:Auto interval does not have proper value
出现这个错误的原因是我们给ChartControl同时设置了Minimum和Maxmum的值,而这两个值又恰好相等. chart.ChartAreas[0].AxisY.Minimum=min; ch ...
- Json模块的详细介绍(序列化)
什么叫序列化——将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到的方法就是存在文件里,然 ...
- Android系统移植与调试之------->如何使用PhotoShop转换24位的bmp图片为16位bmp图片
使用Android移植时候,很多图片都需要16为的bmp格式,所以研究了一下如何从24位转换成16位,供大家参阅 step1:查看bmp图片的属性,如下图所示,是24位的 step2:用PhotoSh ...
- jQuery中获取特定顺序子元素(子元素种类不定)的方法
提出问题:只已知父元素和父元素中子元素的次序,怎么通过jQuery方法获得该元素? <p>第一部分:</p> <ul> <li>1</li> ...
- Ubuntu出现Authentication failure(认证失败)的解决方法(转)
当我们想在刚安装的Linux系统启动某些服务或者想进入root用户时提示认证失败或者权限不够时,原因是刚安装Ubuntu后,root用户默认是未激活的,不允许登录,也不允许使用su命令到转到root用 ...
- 0403-服务注册与发现-客户端负载均衡-Ribbon的基本使用
一.概述 问题1.上一篇文章已说明如何注册微服务,但是调用方如何调用,以及如何防止硬编码.即电影微服务调用用户微服务 问题2.用户微服务多个节点,调用服务方如何负载均衡 二.实现负载均衡方式 2.1. ...
- 根据URL请求 返回XML字符串
public static string GetHttpResponse(string url) { string content = ""; // Create a new Ht ...
- 一种基于自定义代码的asp.net网站访问IP过滤方法!
对于一些企业内部核心系统,特别是外网访问的时候,为了信息安全,可能需要对外部访问的IP地址作限制,虽然IIS中也提供了根据IP地址或IP地址段进行限制或允许,但并没有提供根据IP地址所在的城市进行限制 ...