【问题描述】

W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={ I1, I2,…,I}。实验E需要用到的仪器是I的子集RjI。配置仪器I的费用为c美元。实验E的赞助商已同意为该实验结果支付p美元。W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。

【编程任务】

对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。

【数据输入】

第1行有2个正整数m和n(m,n <= 100)。m是实验数,n是仪器数。接下来的m行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号。最后一行的n个数是配置每个仪器的费用。

【结果输出】

第1行是实验编号;第2行是仪器编号;最后一行是净收益。

【输入文件示例】shuttle.in

2 3
10 1 2
25 2 3
5 6 7

【输出文件示例】shuttle.out

1 2
1 2 3
17

图论 网络流 特别的读入技巧

题目本身就是个裸的最大权闭合子图,没什么好说的

但是这个输入数据很好玩啊,每行没有终止标记。

但是读入也没什么难的,把读入优化魔改了一下就可以直接用了。

交上去发现还是T了,下回来数据发现——数据文件前两行有两个换行符,然后才是m和n,于是17行那样的写法就直接炸了

多加了一个enter标记,换成22行和105行那样的写法就妥了。

中途因为忘了改文件操作就交,又炸了两次

本来以为能1A来着……获得技能[迷之自信] @布吕歇尔自信姬

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int mxn=;
bool enter=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){
if(ch=='-')f=-;
// if(ch=='\r' || ch=='\n')return -1;//并没有卵用
ch=getchar();
}
while(ch>='' && ch<=''){
x=x*+ch-'';ch=getchar();
if(ch=='\r' || ch=='\n')enter=;
}
return x*f;
}
inline int min(int a,int b){return a<b?a:b;}
struct edge{
int v,nxt,f;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].f=f;hd[u]=mct;return;
}
void insert(int u,int v,int c){
add_edge(u,v,c);add_edge(v,u,);return;
}
int S,T;
int d[];
queue<int>q;
bool BFS(){
memset(d,,sizeof d);
q.push(S);d[S]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u],v;i;i=e[i].nxt){
v=e[i].v;
if(e[i].f && !d[v]){
d[v]=d[u]+; q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int f=,tmp;
for(int i=hd[u],v;i;i=e[i].nxt){
v=e[i].v;
if(e[i].f && d[v]==d[u]+ && (tmp=DFS(v,min(e[i].f,lim)))){
e[i].f-=tmp;
e[i^].f+=tmp;
lim-=tmp;
f+=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,INF);
return res;
}
int n,m;
int ans=;
void solve(){
ans-=Dinic();
for(int i=;i<=m;i++)
if(d[i])printf("%d ",i);
puts("");
for(int i=;i<=n;i++){
if(d[i+m])printf("%d ",i);
}
puts("");
printf("%d\n",ans);
return;
}
int main(){
// freopen("in.txt","r",stdin);
freopen("shuttle.in","r",stdin);
freopen("shuttle.out","w",stdout);
int i,j,x;
m=read();n=read();
S=;T=m+n+;
for(i=;i<=m;i++){
x=read();
ans+=x;
insert(S,i,x);
enter=;//
while(!enter){
x=read();
if(x==-)break;
insert(i,x+m,INF);
}
}
for(i=;i<=n;i++){
x=read();
insert(i+m,T,x);
}
solve();
return ;
}

COGS727 [网络流24题] 太空飞行计划的更多相关文章

  1. Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)

    [网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...

  2. [网络流24题] 太空飞行计划(cogs 727)

    [问题描述] W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要使用的全部仪 ...

  3. P2762 [网络流24题]太空飞行计划问题(最小割)

    地址 最大权闭合子图裸题,不说了吧,求方案就是把s集遍历一遍. 错误记录:dfs那块忘判断残量了,11分×1. #include<cstdio> #include<iostream& ...

  4. [网络流24题] 太空飞行计划问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 做这道题之前建议先看这篇论文,虽然论文里很多地方用了很多术语,但hbt神犇讲得很明白 这篇题解更加偏向于感性理解 把问题放到二分图上,左侧一列点是实验,权值为$p[i]$,右 ...

  5. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  6. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  7. LOJ #6008. 「网络流 24 题」餐巾计划

    #6008. 「网络流 24 题」餐巾计划 题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_ir​i​​ 块餐巾.餐厅可以购买新的餐巾,每块餐 ...

  8. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  9. 【hjmmm网络流24题补全计划】

    本文食用方式 按ABC--分层叙述思路 可以看完一步有思路后自行思考 飞行员配对问题 题目链接 这可能是24题里最水的一道吧... 很显然分成两个集合 左外籍飞行员 右皇家飞行员 跑二分图最大匹配 输 ...

随机推荐

  1. 利尔达NB-IOT的PSM和eDRX低功耗模式笔记

    1. NB-IOT的技术优势,广覆盖,NB-IOT与GPRS和LTE相比较,最大链路预算提升了20dB,相当于提升了100倍,即使在地车车库.地下室.地下管道等普通无线网络信号难以到达的地方也容易覆盖 ...

  2. npm命令 VS yarn命令

    npm yarn 说明 npm init yarn init  在项目中引导创建一个package.json文件 npm install yarn install/yarn  安装所有依赖包(依据pa ...

  3. Qt 在Label上面绘制罗盘

    自己写的一个小小的电子罗盘的一个小程序,不过是项目的一部分,只可以贴绘制部分代码 效果如下图 首先开始自己写的时候,虽然知道Qt 的坐标系是从左上角开始的,所以,使用了算法,在绘制后,在移动回来,但是 ...

  4. 今日Linux下安装部署禅道

    我的linux系统是在虚拟机上安装的Ubuntu,禅道在官网www.zentao.net下载安装的开源版的linux64位,采用一键安装包安装.安装前要求:系统上不能有自己安装的mysql .下载的安 ...

  5. Google无法离线安装扩展程序

    Google无法离线安装扩展程序 Chrome插件伴侣 按照里面的使用说明使用 网盘地址: 链接: https://pan.baidu.com/s/1eXoLXyPNl2pfoPnArHq2Lg 提取 ...

  6. centos7使用Gogs搭建Git服务器

    一.初次接触Gogs,记录一下搭建过程 二.平台环境 Linux: CentOS7.5.1804 MySQL: 5.6.35 安装步骤: linux服务器新建git用户: 下载.解压gogs安装包: ...

  7. Docker容器-入门级

    1.1 容器简介 1.1.1 什么是 Linux 容器 Linux容器是与系统其他部分隔离开的一系列进程,从另一个镜像运行,并由该镜像提供支持进程所需的全部文件.容器提供的镜像包含了应用的所有依赖项, ...

  8. 解决:Unable to execute dex: GC overhead limit exceeded

    转自http://blog.sina.com.cn/s/blog_6e334dc70101hnug.html Android打包时下面的错误: Unable to execute dex: GC ov ...

  9. Java面试题(上)

    2013年年底的时候,我看到了网上流传的一个叫做<Java面试题大全>的东西,认真的阅读了以后发现里面的很多题目是重复且没有价值的题目,还有不少的参考答案也是错误的,于是我花了半个月时间对 ...

  10. [Leetcode] 20. Valid Parentheses(Stack)

    括号匹配问题,使用栈的特点,匹配则出栈,否则入栈,最后栈为空则全部匹配.代码如下: class Solution { public: bool isValid(string s) { stack< ...