Entropy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648    Accepted Submission(s): 1451

Problem Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.

There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

 
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
 
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
 
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
 
Sample Output
64 13 4.9
144 51 2.8
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1054 1052 1301 1055 1269 
 
 //0MS    256K    2011 B    G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}

hdu 1053 Entropy (哈夫曼树)的更多相关文章

  1. [POJ 1521]--Entropy(哈夫曼树)

    题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS    Memory Limit: 10000K Description A ...

  2. HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others)   ...

  3. 两个队列+k叉哈夫曼树 HDU 5884

    // 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...

  4. hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. 贪心(哈夫曼树):HDU 5884 sort

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...

  6. HDU 5884 Sort (二分+k叉哈夫曼树)

    题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...

  7. hdu 2527哈夫曼树(二叉树的运用)

    #include<stdio.h> #include<string.h> #define N  100 #define INF  2000000000  int b[N]; c ...

  8. 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)

    Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...

  9. puk1521 赫夫曼树编码

    Description An entropy encoder is a data encoding method that achieves lossless data compression by ...

随机推荐

  1. 【redis常用的键值操作及性能优化】

    服务端 启动redis服务 { // -a:指定密码 -h:指定主机 -p:指定端口 } //让redis 服务中断崩溃 //保存和关闭 //后台备份 //设置登录密码 //redis-benchma ...

  2. 【vlan之四种方式链路认证组网]

    ---恢复内容开始--- 根据项目需求,搭建好如下拓扑图: 在[sysname]下配置给予协议的vlan vlan 1#vlan 10 protocol-vlan 0 ipv4#vlan 20 pro ...

  3. 吐血分享:QQ群霸屏技术(初级篇)

    QQ群,仿似一个冷宫;But,你真摒弃不起. 某人,坐拥2000多个2000人群,月收入10w+,此类人数少,皆因多年的沉淀,以形成完全的壁垒,难以企及的层次. 流量的分散,QQ群相对比较优质的地带, ...

  4. python的初体验

    最近由于毕业答辩,导致一些博客没有更新,见谅,今天我们开始一些新的内容 1.python的注释 单行注释:# 多行注释: ''' 这是多行注释 我们可以在里面写很多很多的行 ''' 2.编码风格 #c ...

  5. 初步学习pg_control文件之十一

    接前文  初步学习pg_control文件之十,再看这个 XLogRecPtr prevCheckPoint; /* previous check point record ptr */ 发生了che ...

  6. laravel+vue结合使用

        SegmentFault 首页 问答 专栏 讲堂 圈子 发现 搜索 立即登录免费注册 在 SegmentFault,学习技能.解决问题 每个月,我们帮助 1000 万的开发者解决各种各样的技术 ...

  7. mac 安装php redis扩展

    git clone git://github.com/nicolasff/phpredis.git cd ./phpredis phpize 如果报 Cannot find autoconf. Ple ...

  8. Linux-Qt Quick学习1-Hello world

    Qt作为共平台的开发IDE.实在是强大,在Quick的学习中,与平台无关,我这里使用ubuntu和openSUSE,之所以不用Windows,是因为我想借这个机会过学习一点linux的东西,哪怕是熟悉 ...

  9. Qt 实现脉搏检测-2,简陋的功能产品

    今天终于可以接上硬件来显示真是的脉搏情况了,上图 主要就是显示脉搏的心跳曲线,和IBI 数据来源是三个,串口,网口和蓝牙,目前只实现了串口,过程应该都是差不多的,监听,读取,解析,等硬件更新后,再次更 ...

  10. Python 套接字的使用 (1)

    获取设备名称和IPv4地址 socket.gethostname() socket.gethostbyname(host_name)   def print_machine_info(): host_ ...