hdu 1053 Entropy (哈夫曼树)
Entropy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648 Accepted Submission(s): 1451
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
END
//0MS 256K 2011 B G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}
hdu 1053 Entropy (哈夫曼树)的更多相关文章
- [POJ 1521]--Entropy(哈夫曼树)
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- 两个队列+k叉哈夫曼树 HDU 5884
// 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...
- hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 贪心(哈夫曼树):HDU 5884 sort
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...
- HDU 5884 Sort (二分+k叉哈夫曼树)
题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...
- hdu 2527哈夫曼树(二叉树的运用)
#include<stdio.h> #include<string.h> #define N 100 #define INF 2000000000 int b[N]; c ...
- 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...
- puk1521 赫夫曼树编码
Description An entropy encoder is a data encoding method that achieves lossless data compression by ...
随机推荐
- 爬虫——正则表达式re模块
为什么要学习正则表达式 实际上爬虫一共就四个主要步骤: 明确目标:需清楚目标网站 爬:将所有的目标网站的内容全部爬下来 取:在爬下来的网站内容中去掉对我们没有用处的数据,只留取我们需要的数据 处理数据 ...
- js分割字符串
js分割字符串 我想达到通过 : 分割 只要第一次分割,后面的内容不使用分割 不行,没找到可以直接用的方法,不过可以通过其它方式达到效果 eg: str.split(':',2)[0] (第一个分隔符 ...
- python网络编程,通过服务名称和会话类型(tcp,udp)获取端口号,简单的异常处理
作为一个php程序员,同时有对网络方面感兴趣,php就比较蛋疼了,所以就抽了些时间看python 之前学python基础因为工作原因,断断续续的看了个基础,差不多是可以写代码了 最近在看<pyt ...
- python与mysql的连接过程
1.cmd---pip3 install PyMySQL2.>>>import pymysql3.mysql>create database bookdb character ...
- 清华大学《C++语言程序设计基础》线上课程笔记02---类与对象
类与对象 public是类的对外访问接口: 类内初始值 在定义类时对数据成员写初始值,在创建对象的时候,会使用类内初始值初始化数据成员: class Clock { public: void show ...
- HDU1301 Jungle Roads(Kruskal)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- HBase配置和使用
参考官方文档 整体实现框架 图1 以下几个为组成部件 21892 HMaster 22028 HRegionServer 21553 QuorumPeerMain 2366 NameNode 2539 ...
- 在编程的时候,NotePad++ 中闪烁的光标突然有竖着闪烁的编程蓝色下划线闪烁的--小技巧告诉你-费元星
当在写代码时出现的光标闪烁(横线闪烁) 在键盘上找 Insert ,按这个Insert就可以把横向闪烁光标( _ )修改成竖向闪烁光标样式( | ),横向光标会在你写代码的时候修改前面的代码,把光标移 ...
- 形象的理解Strong和Weak
Strong Weak
- qt 编译unresolved external symbol的错误解决
题外问题:.rc文件报错,里面引用的.h文件打不开. 方法:rc文件移除,然后重新添加就可以: unresolved external symbol的原因: 1.没有添加编译生成的moc文件,添加对应 ...