hdu 1053 Entropy (哈夫曼树)
Entropy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3648 Accepted Submission(s): 1451
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
END
//0MS 256K 2011 B G++
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef struct Huffman{
int deep; //深度
int freq; //权重
Huffman *left,*right;
friend bool operator <(Huffman a,Huffman b){ //优先队列
return a.freq>b.freq;
}
}Huffman;
Huffman trie[];
Huffman *root;
int len,id,sum;
int cnt;
priority_queue<Huffman>Q;//优先队列 void huffman()
{
sum=;
root=(Huffman*)malloc(sizeof(Huffman)); //打酱油头指针
for(int i=;i<id;i++)Q.push(trie[i]);
while(Q.size()>) //建立huffman树
{
Huffman *h1=(Huffman*)malloc(sizeof(Huffman));
*h1=Q.top();
Q.pop();
Huffman *h2=(Huffman*)malloc(sizeof(Huffman));
*h2=Q.top();
Q.pop(); Huffman h3;
h3.left=h1;
h3.right=h2;
h3.freq=h1->freq+h2->freq;
Q.push(h3);
}
*root=Q.top();
Q.pop();
root->deep=; queue<Huffman>q;//计算结果的队列
q.push(*root);
while(!q.empty())
{
Huffman ht=q.front();
q.pop();
if(ht.left!=NULL){
ht.left->deep=ht.deep+;
q.push(*ht.left);
}
if(ht.right!=NULL){
ht.right->deep=ht.deep+;
q.push(*ht.right);
}
if(!ht.left && !ht.right){ //叶子节点
sum+=ht.deep*ht.freq;
}
}
} int main()
{
char c[];
while(scanf("%s",c)!=EOF)
{
if(strcmp(c,"END")==) break;
len=strlen(c);
c[len]='!';
sort(c,c+len);
cnt=;
id=;
for(int i=;i<=len;i++){
if(c[i]!=c[i-]){
trie[id++].freq=cnt;
cnt=;
}else cnt++;
}
if(id==) printf("%d %d 8.0\n",len*,len);
else{
huffman();
printf("%d %d %.1lf\n",len*,sum,len*8.0/sum);
}
}
return ;
}
hdu 1053 Entropy (哈夫曼树)的更多相关文章
- [POJ 1521]--Entropy(哈夫曼树)
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
- HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1053 Entropy Time Limit: 2000/1000 MS (Java/Others) ...
- 两个队列+k叉哈夫曼树 HDU 5884
// 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...
- hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 贪心(哈夫曼树):HDU 5884 sort
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...
- HDU 5884 Sort (二分+k叉哈夫曼树)
题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...
- hdu 2527哈夫曼树(二叉树的运用)
#include<stdio.h> #include<string.h> #define N 100 #define INF 2000000000 int b[N]; c ...
- 哈夫曼树:HDU5884-Sort(队列、哈夫曼树)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) 题目链接:http://ac ...
- puk1521 赫夫曼树编码
Description An entropy encoder is a data encoding method that achieves lossless data compression by ...
随机推荐
- deepin系统无线网络卡死或者极慢的解决方案
在初次安装deb或者fedara系列的桌面发行版的之后,经常会出现无线网络极慢甚至卡死的状况. 笔者在初次使用deepin系统的时候,也遇到同样的问题,很大程度上是由于没有安装对应的驱动. 下面给出对 ...
- 【mysql学习-1】
part-1: #use mysql;/*show tables;select * from user;use mysql;show databases;#create database db1; # ...
- python3 练习题100例 (二十九)猴子吃桃问题
题目内容: 猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第n天(<1<n< ...
- 基于vue来开发一个仿饿了么的外卖商城(一)
一.准备工作 1.大前提:已安装好node. npm. vue. vue-cli.stylus(此项目使用stylus来编译) 2.开发软件:Google Chrome(建议安装插件vue-devto ...
- Rmarkdown:输出pdf设置
输出pdf需要安装Ctex --- title: "first markdown" author: "name" date: "`r format(S ...
- SAP ABAP Development Tools in Eclipseのセットアップ
手順 1. Eclipse IDE インストール 以下からダウンロード.https://tools.hana.ondemand.com/#abap※2018/1月現在 Oxygen(4.7)詳細は割愛 ...
- Linux系统下安装rz/sz命令
执行命令 yum install -y lrzsz rz -be本地上传文件到服务器
- 利用JS调取电脑摄像头,实现拍照功能
1.调取电脑摄像头非常简单,看代码一幕了然 window.addEventListener("DOMContentLoaded", function() { var canvas ...
- c/c++容器操作
C++中的容器大致可以分为两个大类:顺序容器和关联容器.顺序容器中包含有顺序容器适配器. 顺序容器:将单一类型元素聚集起来成为容器,然后根据位置来存储和访问这些元素.主要有vector.list.de ...
- 【问题记录】Linux Python等交互式输入回退键出现 ^H^H
执行:yum install readline readline-devel