BZOJ4488 JSOI2015最大公约数
显然若右端点确定,gcd最多变化log次。容易想到对每一种gcd二分找最远端点,但这样就变成log^3了。注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂。由于区间只有log个,暴力即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010
#define ll long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,r[N],tmp[N],head=,tail;
ll a[N],ans,g[N];
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4488.in","r",stdin);
freopen("bzoj4488.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
r[++tail]=i;g[tail]=a[i];
for (int j=head;j<tail;j++) g[j]=gcd(g[j],a[i]);
int x=tail+;
for (int j=tail;j>=head;j--)
{
int t=j;
while (t>head&&g[t-]==g[j]) t--;
x--,r[x]=r[t],g[x]=g[t];
j=t;
}
head=x;
for (int j=head;j<=tail;j++) ans=max(ans,(i-r[j]+)*g[j]);
}
cout<<ans;
return ;
}
BZOJ4488 JSOI2015最大公约数的更多相关文章
- BZOJ4488: [Jsoi2015]最大公约数
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...
- bzoj 4488 [Jsoi2015]最大公约数 结论+暴力
[Jsoi2015]最大公约数 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 302 Solved: 169[Submit][Status][Dis ...
- BZOJ-4488:最大公约数(GCD)
给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ...
- BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...
- [BZOJ 4488][Jsoi2015]最大公约数
传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...
- [JSOI2015]最大公约数
题意:给一个序列a[1],a[2],a[3]...a[n],求其中连续的子序列A[L],A[L+1],...,A[R],使其权值 W(L,R)=(R-L+1)×gcd(A[L],...,A[R])最大 ...
- 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)
洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...
- [暑假的bzoj刷水记录]
(这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊 堆一起算了 隔一段更新一下. 7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...
- 2018年长沙理工大学第十三届程序设计竞赛 I 连续区间的最大公约数
连续区间的最大公约数 思路:参照BZOJ 4488: [Jsoi2015]最大公约数脑补出的一个\(map\)套\(vector\)的写法,写起来比线段树短,运行时间比线段树快. 代码: #pragm ...
随机推荐
- php接口数据加密、解密、验证签名【转】
<?php/** * 数据加密,解密,验证签名 * @edit http://www.lai18.com * @date 2015-07-08 **///header('Content-Type ...
- Docker运行Nginx服务器
一.获取Docker容器的Nginx镜像 二.创建Docker容器宿主机挂载目录 # 创建挂载目录,-v 显示创建的目录名 [root@idclooknet ~]# mkdir -vp /opt/do ...
- php sign签名实例
1:实现签名代码: /** * 签名生成算法 * @param array $params API调用的请求参数集合的关联数组,不包含sign参数 * @param string $secret 签名 ...
- C# 隐藏窗口标题栏、隐藏任务栏图标
//没有标题 this.FormBorderStyle = FormBorderStyle.None; //任务栏不显示 this.ShowInTaskbar = false;
- go学习笔记-程序测试
程序测试 测试是一个可重复的过程,它验证某个东西是否按预期工作.一般通过 go test 进行测试,步骤如下 首先,是我们的文件名.Go 要求所有的测试都在以 _test.go 结尾的文件中.这使得我 ...
- (数据科学学习手札19)R中基本统计分析技巧总结
在获取数据,并且完成数据的清洗之后,首要的事就是对整个数据集进行探索性的研究,这个过程中会利用到各种描述性统计量和推断性统计量来初探变量间和变量内部的基本关系,本篇笔者便基于R,对一些常用的数据探索方 ...
- Java——英文字母---18.10.11
package lianxi;import java.io.*;import java.util.Scanner;public class file{ public static void main ...
- Centos7下lamp环境搭建的小笔记
刚刚把校赛弄完,赛前在环境搭建上花了蛮多时间,也正好记一下笔记 0.首先更新源 清华大学开源镜像站的源 https://mirrors.tuna.tsinghua.edu.cn/help/centos ...
- 如何在Moodle中显示PPT课件
Moodle中目前是不直接支持PPT的,所以需要曲线救国: 1.安装 iSpring Free 8版本,免费版,其实是一个PPT的插件,在PPT的工具栏中有显示. 2.打开PPT后,直接在该工具中进行 ...
- “Code First Migrations ”工具【转】
在本篇文章中,我们学习如何使用实体框架的“Code First Migrations ”(也称为代码先行功能)工具,使用其中的“迁移”功能对模型类进行一些修改,同时同步更新对应数据库的表结构. 默认情 ...