显然若右端点确定,gcd最多变化log次。容易想到对每一种gcd二分找最远端点,但这样就变成log^3了。注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂。由于区间只有log个,暴力即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010
#define ll long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,r[N],tmp[N],head=,tail;
ll a[N],ans,g[N];
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4488.in","r",stdin);
freopen("bzoj4488.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
r[++tail]=i;g[tail]=a[i];
for (int j=head;j<tail;j++) g[j]=gcd(g[j],a[i]);
int x=tail+;
for (int j=tail;j>=head;j--)
{
int t=j;
while (t>head&&g[t-]==g[j]) t--;
x--,r[x]=r[t],g[x]=g[t];
j=t;
}
head=x;
for (int j=head;j<=tail;j++) ans=max(ans,(i-r[j]+)*g[j]);
}
cout<<ans;
return ;
}

BZOJ4488 JSOI2015最大公约数的更多相关文章

  1. BZOJ4488: [Jsoi2015]最大公约数

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...

  2. bzoj 4488 [Jsoi2015]最大公约数 结论+暴力

    [Jsoi2015]最大公约数 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 302  Solved: 169[Submit][Status][Dis ...

  3. BZOJ-4488:最大公约数(GCD)

    给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ...

  4. BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd

    Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...

  5. [BZOJ 4488][Jsoi2015]最大公约数

    传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...

  6. [JSOI2015]最大公约数

    题意:给一个序列a[1],a[2],a[3]...a[n],求其中连续的子序列A[L],A[L+1],...,A[R],使其权值 W(L,R)=(R-L+1)×gcd(A[L],...,A[R])最大 ...

  7. 洛谷 P5502 - [JSOI2015]最大公约数(区间 gcd 的性质+分治)

    洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区 ...

  8. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  9. 2018年长沙理工大学第十三届程序设计竞赛 I 连续区间的最大公约数

    连续区间的最大公约数 思路:参照BZOJ 4488: [Jsoi2015]最大公约数脑补出的一个\(map\)套\(vector\)的写法,写起来比线段树短,运行时间比线段树快. 代码: #pragm ...

随机推荐

  1. vue-cli中vuex IE兼容

    vue2.0 兼容ie9及其以上 vue-cli中使用vuex的项目 在IE中会出现页面空白 控制台报错的情况:我们只需要安装一个插件,然后在main.js中全局引入即可 安装 npm install ...

  2. vuex重置所有state(可定制)

    在正式场景中我们经常遇到一个问题,就是登出页面或其他操作的时候,我们需要重置所有的vuex,让其变为初始状态,那么,就涉及到了多种方法:1.页面刷新: window.location.reload() ...

  3. Centos7 搭建 hadoop3.1.1 集群教程

    配置环境要求: Centos7 jdk 8 Vmware 14 pro hadoop 3.1.1 Hadoop下载 安装4台虚拟机,如图所示 克隆之后需要更改网卡选项,ip,mac地址,uuid 重启 ...

  4. Python3 模块、包调用&路径

    ''' 以下代码均为讲解,不能实际操作 ''' ''' 博客园 Infi_chu ''' ''' 模块的优点: 1.高可维护性 2.可以大大减少编写的代码量 模块一共有三种: 1.Python标准库 ...

  5. HyperLedger Fabric 1.4 超级账本起源(5.1)

    至比特币开源以来,无数技术人员对其进行研究,并且对该系统经过了无数次改进,超级账本项目(Hyperledger)最初也是用来改善比特币的底层技术,最终由Linux基金会组织发展起来.       开放 ...

  6. app:showAsAction 和android:showAsAction

    app:showAsAction 它有三个可选项1.always:总是显示在界面上2.never:不显示在界面上,只让出现在右边的三个点中3.ifRoom:如果有位置才显示,不然就出现在右边的三个点中 ...

  7. 签名的html

    <b><a href="http://www.feiyuanxing.com" style="color:red">未来星开发团队--狒 ...

  8. 『MongoDB』集合更新操作

    参考 定义 db.collection.update(query, update, options) 改变一个在集合中已经存在的文档或文档数组.默认的,update()方法更新一个独立的文档.如果mu ...

  9. 阅读MDN文档之布局(四)

    Introducing positioning Static positioning Relative positioning Introducing top, bottom, left and ri ...

  10. Percona-Tookit工具包之pt-mysql-summary

      Preface       Sometimes we need to collect information of  MySQL server as a report when we first ...