x = tf.placeholder(tf.float32, [None, 784])

x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point numbers, with a shape [None, 784]. (Here None means that a dimension can be of any length.)

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

    t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量(大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ....

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

形状 维数 实例
0 [ ] 0-D 一个 0维张量. 一个纯量.
1 [D0] 1-D 一个1维张量的形式[5].
2 [D0, D1] 2-D 一个2维张量的形式[3, 4].
3 [D0, D1, D2] 3-D 一个3维张量的形式 [1, 4, 3].
n [D0, D1, ... Dn] n-D 一个n维张量的形式 [D0, D1, ... Dn].

形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape class.

数据类型

除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。的更多相关文章

  1. TensorFlow进阶(一)----张量的阶和数据类型

    张量的阶和数据类型 TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更 ...

  2. AI - TensorFlow - 张量(Tensor)

    张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...

  3. Tensorflow张量

    张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...

  4. 121、TensorFlow张量命名

    # tf.Graph对象定义了一个命名空间对于它自身包含的tf.Operation对象 # TensorFlow自动选择一个独一无二的名字,对于数据流图中的每一个操作 # 但是给操作添加一个描述性的名 ...

  5. java中的基本数据类型一定存储在栈中吗?

    首先说明,"java中的基本数据类型一定存储在栈中的吗?”这句话肯定是错误的. 下面让我们一起来分析一下原因: 基本数据类型是放在栈中还是放在堆中,这取决于基本类型在何处声明,下面对数据类型 ...

  6. golang自己定义数据类型查询与插入postgresql中point数据

    golang自己定义数据类型查询与插入postgresql中point数据 详细代码例如以下: package main import ( "bytes" "databa ...

  7. Tensorflow张量的形状表示方法

    对输入或输出而言: 一个张量的形状为a x b x c x d,实际写出这个张量时: 最外层括号[…]表示这个是一个张量,无别的意义! 次外层括号有a个,表示这个张量里有a个样本 再往内的括号有b个, ...

  8. tensorflow张量排序

    本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range( ...

  9. TensorFlow—张量运算仿真神经网络的运行

    import tensorflow as tf import numpy as np ts_norm=tf.random_normal([]) with tf.Session() as sess: n ...

随机推荐

  1. mysql之log-slave-updates参数

    1.引言 使用Mysql的replication机制实现主从同步时,其是由三个线程实现了,主库一个I/O线程,从库一个I/O线程和一个SQL线程.配置时主库需要开始bin-log参数,即在配置文件中添 ...

  2. Eclipse maven 项目红叉 编译不报错问题处理

    项目右键-> Maven ->  Update Maven Project 选中 :Force update 复选框

  3. iOS 学习笔记七 【博爱手把手教你使用2016年gitHub Mac客户端】

    iOS 学习笔记七 [博爱手把手教你使用gitHub客户端] 第一步:首先下载git客户端 链接:https://desktop.github.com 第二步:fork 大神的代码[这里以我的代码为例 ...

  4. Leetcode392. Is Subsequence

    Description Given a string s and a string t, check if s is subsequence of t. You may assume that the ...

  5. [已解决]pycharm报错:AttributeError: module 'pip' has no attribute 'main'

    > 更新pip后,pycharm更新模块报错,经过一番查找,现提供两种解决办法. 报错片段信息如下: AttributeError: module 'pip' has no attribute ...

  6. Hibernate命名查询

    hibernate命名的查询是通过一些有意义的名称来使用查询的方式.就类似于使用别名一样. Hibernate框架提供命名查询的概念,以便应用程序员不需要将查询分散到所有的java代码,进一步提高代码 ...

  7. apache2+svn Cannot load modules/mod_dav_svn.so into server: \xd5\xd2\xb2\xbb\xb5\xbd\xd6\xb8\xb6\xa8\xb5\xc4\xc4\xa3\xbf\xe9\xa1\xa3

    按照svn里的readme文件安装配置apache2与svn后, 启动apache2服务的时候 出现下面的问题 Cannot load C:/Program Files/Apache Software ...

  8. Python Theano 一键安装

    Download Anaconda Anaconda is a completely free Python distribution (including for commercial use an ...

  9. redhat6.5安装ntfs-3g rpm来支持ntfs文件系统挂载

    linux安装ntfs-3g模块来支持ntfs文件系统挂载 所需包 fuse-2.9.3.tar.gz ntfs-3g_ntfsprogs-2011.4.12.tgz step1. 解压fuse-2. ...

  10. linq to sql 动态构建查询表达式树

    通过Expression类进行动态构造lamda表达式. 实现了以下几种类型,好了代码说话: public Expression<Func<T, bool>> GetAndLa ...