x = tf.placeholder(tf.float32, [None, 784])

x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point numbers, with a shape [None, 784]. (Here None means that a dimension can be of any length.)

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

    t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量(大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ....

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

形状 维数 实例
0 [ ] 0-D 一个 0维张量. 一个纯量.
1 [D0] 1-D 一个1维张量的形式[5].
2 [D0, D1] 2-D 一个2维张量的形式[3, 4].
3 [D0, D1, D2] 3-D 一个3维张量的形式 [1, 4, 3].
n [D0, D1, ... Dn] n-D 一个n维张量的形式 [D0, D1, ... Dn].

形状可以通过Python中的整数列表或元祖(int list或tuples)来表示,也或者用TensorShape class.

数据类型

除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。的更多相关文章

  1. TensorFlow进阶(一)----张量的阶和数据类型

    张量的阶和数据类型 TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更 ...

  2. AI - TensorFlow - 张量(Tensor)

    张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howd ...

  3. Tensorflow张量

    张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...

  4. 121、TensorFlow张量命名

    # tf.Graph对象定义了一个命名空间对于它自身包含的tf.Operation对象 # TensorFlow自动选择一个独一无二的名字,对于数据流图中的每一个操作 # 但是给操作添加一个描述性的名 ...

  5. java中的基本数据类型一定存储在栈中吗?

    首先说明,"java中的基本数据类型一定存储在栈中的吗?”这句话肯定是错误的. 下面让我们一起来分析一下原因: 基本数据类型是放在栈中还是放在堆中,这取决于基本类型在何处声明,下面对数据类型 ...

  6. golang自己定义数据类型查询与插入postgresql中point数据

    golang自己定义数据类型查询与插入postgresql中point数据 详细代码例如以下: package main import ( "bytes" "databa ...

  7. Tensorflow张量的形状表示方法

    对输入或输出而言: 一个张量的形状为a x b x c x d,实际写出这个张量时: 最外层括号[…]表示这个是一个张量,无别的意义! 次外层括号有a个,表示这个张量里有a个样本 再往内的括号有b个, ...

  8. tensorflow张量排序

    本篇记录一下TensorFlow中张量的排序方法 tf.sort和tf.argsort # 声明tensor a是由1到5打乱顺序组成的 a = tf.random.shuffle(tf.range( ...

  9. TensorFlow—张量运算仿真神经网络的运行

    import tensorflow as tf import numpy as np ts_norm=tf.random_normal([]) with tf.Session() as sess: n ...

随机推荐

  1. 基于FPGA实现的高速串行交换模块实现方法研究

    基于FPGA实现的高速串行交换模块实现方法研究 https://wenku.baidu.com/view/9a3d501a227916888486d7ed.html

  2. Could not calculate build plan

    问题:根据你提供的镜像地址,下载相应的jar包失败 原因: 1.你提供的镜像地址不稳定,把settings.xml文件中的mirror改成稳定的镜像地址 2.网络不稳定,重新下载,或者切换网络.

  3. centos6 找不到 phpize

    安装php-devel yum install php-devel.i686

  4. 如何查询当前手机的cpu架构,so库导入工程又出异常了?

    执行adb命令: adb shell cat /proc/cpuinfo 对应文件夹 AArch64 == arm64-v8a ARMv7 == armeabi-v7a ............等 其 ...

  5. php 遍历静态html成文章列表

    准备 代码 <?php $root=__DIR__; //全站目录 function my($dir){ static $item_arr=array(); $a=scandir($dir); ...

  6. linux 分区格式查看

    Linux分区格式查看 两个文件 /etc/fstab 和/etc/mtab /etc/fstab是用来存放文件系统的静态信息的文件,当系统启动的时候. 系统会自动地从这个文件读取信息,并且会自动将此 ...

  7. jQuery EasyUI编辑DataGrid用combobox实现多级联动

    我在项目中设计课程表的时候需要用到老师和分类之间的多级联动. 首先是一张效果图: 下面是实现的代码: <body> <script type="text/javascrip ...

  8. windows 下XAMPP 使用Nginx替代apache作为服务器

    说实话, 在windows下使用Nginx 着实有点不太方便, 但因项目需求, 又不想换系统(虽然可以搞个虚拟机玩), 只能用Nginx了 好了, 不多说了. 开始... 首先我用的是xampp包(A ...

  9. Java手记

    由于腾讯的MTA只有JAVA的demo,为了测试用php实现的加密算法是否正确,所有只能运行一下Java 配置环境:http://www.runoob.com/java/java-environmen ...

  10. Android开发:《Gradle Recipes for Android》阅读笔记(翻译)3.3——整合resource文件

    问题: 想要在product的flavor里面改变图片,文字或者其它资源. 解决方案: 在flavor里面增加合适的资源目录,并且改变他们包含的值. 讨论: 考虑下3.2章的“hello world ...