「PKUWC 2018」随机算法 (第二版,正解做法)
上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分。。。。
第一次做的时候光想练一练暴力。。。就没去想正解,谁知道正解比暴力好写不知道多少,mmp
设 f(S) 为 选集合S中的点可以得最大独立集的概率, M(S) 为 集合S 中的点构成的最大独立集是多少。
那么我们转移的时候,就枚举一下集合S中第一个加入独立集的点i,删去集合中和i相邻的点(包括i),得到s',用它更新M()之后,f()就可以顺带算出来了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=998244353,maxn=2333333;
inline void add(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
int p[29],n,m,ci[33],f[maxn],M[maxn],inv[33],all;
int main(){
ci[0]=inv[1]=1,ci[1]=2;
for(int i=2;i<=30;i++) ci[i]=ci[i-1]<<1,inv[i]=ha-inv[ha%i]*(ll)(ha/i)%ha; scanf("%d%d",&n,&m),all=ci[n]-1;
int uu,vv;
while(m--) scanf("%d%d",&uu,&vv),uu--,vv--,p[uu]|=ci[vv],p[vv]|=ci[uu];
for(int i=0;i<n;i++) p[i]|=ci[i]; f[0]=1,M[0]=0;
for(int i=1,now;i<=all;i++){
now=0; for(int j=0,lef;j<n;j++) if(ci[j]&i){
lef=(all^p[j])&i,now++;
if(M[lef]>=M[i]) M[i]=M[lef]+1,f[i]=f[lef];
else if(M[lef]+1==M[i]) add(f[i],f[lef]);
} f[i]=f[i]*(ll)inv[now]%ha;
} printf("%d\n",f[all]);
return 0;
}
「PKUWC 2018」随机算法 (第二版,正解做法)的更多相关文章
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- loj2540 「PKUWC 2018」随机算法
pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...
- 「PKUWC 2018」随机算法 (60分部分分做法)
明天就是CTSC的DAY 2了qwq,晚上敲敲暴力攒攒RP,果断随便看了个题就是打暴力hhhhh 前50% O(3^N) 暴力没什么好说的,我们设F[S][s]为已经选了S集合中的点,并且这个集合中的 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- loj2538 「PKUWC 2018」Slay the Spire
pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- 「PKUWC 2018」Minimax
传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...
随机推荐
- 【BZOJ 1492】 [NOI2007]货币兑换Cash 斜率优化DP
先说一下斜率优化:这是一种经典的dp优化,是OI中利用数形结合的思想解决问题的典范,通常用于优化dp,有时候其他的一些决策优化也会用到,看待他的角度一般有两种,但均将决策看为二维坐标系上的点,并转化为 ...
- 几个JavaScript的浏览器差异处理问题
JQuery确实是个很好用的库,你可以不用考虑很多细节方面的事情.但很作为一个web前端,处理和了解浏览器差异一个重要问题.下面将介绍一些总结,先介绍没有使用js库的情况. 1. setAttribu ...
- Ubuntu下安装LNMP之php7的安装并配置Nginx支持php及卸载php
据了解,php7是比之前的版本性能快很多的.http://php.net/get/php-7.2.2.tar.gz/from/a/mirror 安装前也可提前将相关依赖库安装好,或者在安装php时若安 ...
- Collection与Map的对比
Map:HashMap.HashTable 如何在它们之间选择 一.Array , Arrays Java所有“存储及随机访问一连串对象”的做法,array是最有效率的一种. 1. 效率高, ...
- 根据select创建input并赋值
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> ...
- Eclipse Jetty调试时无法保存js文件
Jetty会使用内存映射文件来缓存静态文件,包括js,css文件. 在Windows下,使用内存映射文件会导致文件被锁定,所以当Jetty启动的时候无法在编辑器对js或者css文件进行编辑. 解决办法 ...
- Posted和Non-Posted传送方式
PCI总线规定了两类数据传送方式,分别是Posted和Non-Posted数据传送方式.其中使用Posted数据传送方式的总线事务也被称为Posted总线事务:而使用Non-Posted数据传送方式的 ...
- 【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈
这题曾经用sam打过,现在学sa再来做一遍. 基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀. 分组之后,假设现在是做B的后缀.前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的 ...
- loj6029 「雅礼集训 2017 Day1」市场
传送门:https://loj.ac/problem/6029 [题解] 考虑如果有一些近似连续的段 比如 2 2 2 3 3 3,考虑在除3意义下,变成0 0 0 1 1 1,相当于整体-2 又:区 ...
- TortoiseSVN与VisualSVN Server搭建SVN版本控制系统【转】
转自:http://www.cnblogs.com/xing901022/p/4399382.html 本片主要介绍如何搭建SVN版本控制系统,主要使用工具: 1 客户端:TortoiseSVN (小 ...