「PKUWC 2018」随机算法 (第二版,正解做法)

上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分。。。。
第一次做的时候光想练一练暴力。。。就没去想正解,谁知道正解比暴力好写不知道多少,mmp
设 f(S) 为 选集合S中的点可以得最大独立集的概率, M(S) 为 集合S 中的点构成的最大独立集是多少。
那么我们转移的时候,就枚举一下集合S中第一个加入独立集的点i,删去集合中和i相邻的点(包括i),得到s',用它更新M()之后,f()就可以顺带算出来了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=998244353,maxn=2333333;
inline void add(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
int p[29],n,m,ci[33],f[maxn],M[maxn],inv[33],all;
int main(){
ci[0]=inv[1]=1,ci[1]=2;
for(int i=2;i<=30;i++) ci[i]=ci[i-1]<<1,inv[i]=ha-inv[ha%i]*(ll)(ha/i)%ha; scanf("%d%d",&n,&m),all=ci[n]-1;
int uu,vv;
while(m--) scanf("%d%d",&uu,&vv),uu--,vv--,p[uu]|=ci[vv],p[vv]|=ci[uu];
for(int i=0;i<n;i++) p[i]|=ci[i]; f[0]=1,M[0]=0;
for(int i=1,now;i<=all;i++){
now=0; for(int j=0,lef;j<n;j++) if(ci[j]&i){
lef=(all^p[j])&i,now++;
if(M[lef]>=M[i]) M[i]=M[lef]+1,f[i]=f[lef];
else if(M[lef]+1==M[i]) add(f[i],f[lef]);
} f[i]=f[i]*(ll)inv[now]%ha;
} printf("%d\n",f[all]);
return 0;
}
「PKUWC 2018」随机算法 (第二版,正解做法)的更多相关文章
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- loj2540 「PKUWC 2018」随机算法
pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...
- 「PKUWC 2018」随机算法 (60分部分分做法)
明天就是CTSC的DAY 2了qwq,晚上敲敲暴力攒攒RP,果断随便看了个题就是打暴力hhhhh 前50% O(3^N) 暴力没什么好说的,我们设F[S][s]为已经选了S集合中的点,并且这个集合中的 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- loj2538 「PKUWC 2018」Slay the Spire
pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- 「PKUWC 2018」Minimax
传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...
随机推荐
- 怎么利用idea自带的工具,不需要 重启tomcat或则其他服务,js代码自动生效
idea中有一个工具:可以直接upload,能让你修改的界面直接可以看到,不需要重启服务. 依次点击的按钮如下: 点击进入的界面这个填的只是一个示例,在各位的电脑上肯定不行,大家依据实际情况填写.
- 学习python类
类:Python 类提供了面向对象编程的所有基本特征: 允许多继承的类继承机制, 派生类可以重写它父类的任何方法, 一个方法可以调用父类中重名的方法. 对象可以包含任意数量和类型的数据成员. 作为模块 ...
- JAX-WS 注解
一.概述 “基于 XML 的 Web Service 的 Java API”(JAX-WS)通过使用注释来指定与 Web Service 实现相关联的元数据以及简化 Web Service 的开发.注 ...
- css实现九宫格图片自适应布局
我之前写九宫格自适应布局的时候,每个格子是使用媒体查询器(@media)或者js动态设置css,根据不同的手机屏幕宽度,适配不同手机,但是这样有个很大的缺点,那就是移动端的屏幕尺寸太多了,就得写很多代 ...
- Android 实现对图片 Exif 的修改(Android 自带的方法)
很多时候我们都要对我们的图片信息进行一些处理,比如向图片中写入经纬度,拍摄时间,设备信息,作者等等. 这个时候我们就要对我们的图片Exif进行写入信息的操作,当然,我们想知道图片的Exif信息,也可以 ...
- Linux下部署weblogic应用
1.Linux下weblogic安装 2.Linux下设置weblogic监听服务器地址(默认为本机) 1).修改domain\config\config.xml文件 修改 <server> ...
- 图论---图的m-点着色判定问题(回溯法--迭代式)
转自 图的m着色问题 图的m-着色判定问题——给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化 ...
- 图论:KM算法
如果,将求二分图的最大匹配的所有匹配边的权重看做1 那么用匈牙利算法求二分图的最大匹配的问题也可以看成求二分图的最大权匹配 如果边权是特例,我们就要使用KM算法来做了 这个算法其实还是比较难的,会用就 ...
- [ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流
Reactor Cooling The terrorist group leaded by a well known international terrorist Ben Bladen is bul ...
- [object-c 2.0 程序设计]object-c file handle (二)
// // main.m // cmdTry // // Created by Calos Chen on 2017/8/21. // Copyright © 2017年 Calos Chen. Al ...