http://blog.csdn.net/sunnytina/article/details/51895406

Android使用Direct Textures提高glReadPixels、glTexImage2D性能 http://www.jianshu.com/p/1fa36461fc6f

Android中的EGL扩展 http://ju.outofmemory.cn/entry/146313

Using the EGL* Image Extension

The conventional way to copy an image into a texture is with either the glTexImage2D() orglTexSubImage2D() methods, but these methods are slow because of how they convert the format of the image data as it is copied. These are really intended for loading static images, not dynamic ones. Moving images between OpenGL* ES textures and another graphics API quickly requires direct access to the memory in which the texture image is stored. Ideally, the image should be copied by an accelerated 2D BitBlt, but that requires the physical address of the image. Otherwise, you can use amemcpy() method instead, which only requires the virtual address of the image.

The EGL* image extension is an extension to the EGL* standard defined by the Khronos Group that provides the virtual or physical addresses of an OpenGL* ES texture. With these addresses, images can be copied to or from OpenGL* ES textures quickly. This technique is so fast that it is possible to stream uncompressed video into OpenGL* ES, but doing so typically requires converting the pixels from the YUV to RGB color space, which is beyond the scope of this article.

The official name of the EGL* image extension is GL_OES_EGL_image. It is widely supported on most platforms, including Android. To confirm which extensions are available on any platform, use the functions provided in Listing 4 to return strings that list all of the available extensions by name for your OpenGL* ES and EGL* drivers.

Listing 4. Checking for available OpenGL* ES and EGL* extensions

glGetString(GL_EXTENSIONS);
eglQueryString(eglGetCurrentDisplay(), EGL_EXTENSIONS);

The header file eglext.h defines the names of the rendering surface types that the EGL* and OpenGL* ES drivers for your platform support. Table 1 provides a summary of the EGL* image surface types that are available for Android. Note that Android lists support for the EGL_KHR_image_pixmap extension, but it is actually the EGL_NATIVE_BUFFER_ANDROID surface type that you must use, notEGL_NATIVE_PIXMAP_KHR.

Table 1. Surface types for EGL* images on Android

Extension Surface type
EGL_NATIVE_PIXMAP_KHR Pixmap surface (not available on Android)
EGL_GL_TEXTURE_2D_KHR Conventional 2D texture
EGL_GL_TEXTURE_3D_KHR Conventional 3D texture
EGL_GL_RENDERBUFFER_KHR Render buffer surface for glReadPixels()
EGL_NATIVE_BUFFER_ANDROID For Android’s native graphics API

The code in Listing 5 shows how to use the EGL* image extension in two ways. First, on the Android platform, a native GraphicBuffer surface is created and locked. This buffer can be accessed for rendering while it is locked. When this buffer is unlocked, it can be imported into a new EGL* image with the ClientBufferAddress parameter to eglCreateImageKHR(). This EGL* image is then bound to GL_TEXTURE_2D with glEGLImageTargetTexture2DOES(), to be used as any texture can be used in OpenGL* ES. This is accomplished without ever copying the image, as the native GraphicBufferand the OpenGL* ES texture are actually sharing the same image data. This example demonstrates how images can be exchanged quickly between OpenGL* ES and Android or any 2D API on the Android platform. Note that the GraphicBuffer class is only available in the Android framework API, not the NDK.

If you are not using Android, you can still import images into OpenGL* ES textures in the same way. Set the ClientBufferAddress to point to your image data, and set the SurfaceType asEGL_GL_TEXTURE_2D_KHR. Refer to your eglext.h include file for a complete list of the surface types that are available on your platform. Use eglQuerySurface() to obtain the address, pitch (stride), and origin of the new EGL* image buffer after it is created. Be sure to use eglGetError() after each call to the EGL* to check for any returned errors.

Listing 5. Example of using the EGL* image extension with Android

#include <EGL/eglext.h>
#include <GLES2/gl2ext.h>
    
#ifdef    ANDROID
    GraphicBuffer * pGraphicBuffer = new GraphicBuffer(ImageWidth, ImageHeight, PIXEL_FORMAT_RGB_565, GraphicBuffer::USAGE_SW_WRITE_OFTEN | GraphicBuffer::USAGE_HW_TEXTURE);

// Lock the buffer to get a pointer
    unsigned char * pBitmap = NULL;
    pGraphicBuffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN,(void **)&pBitmap);

// Write 2D image to pBitmap

// Unlock to allow OpenGL ES to use it
    pGraphicBuffer->unlock();

EGLClientBuffer ClientBufferAddress = pGraphicBuffer->getNativeBuffer();
EGLint SurfaceType = EGL_NATIVE_BUFFER_ANDROID;
#else
EGLint SurfaceType = EGL_GL_TEXTURE_2D_KHR;
#endif

// Make an EGL Image at the same address of the native client buffer
EGLDisplay eglDisplayHandle = eglGetDisplay(EGL_DEFAULT_DISPLAY);

// Create an EGL Image with these attributes
EGLint eglImageAttributes[] = {EGL_WIDTH, ImageWidth, EGL_HEIGHT, ImageHeight, EGL_MATCH_FORMAT_KHR,  EGL_FORMAT_RGB_565_KHR, EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};

EGLImageKHR eglImageHandle = eglCreateImageKHR(eglDisplayHandle, EGL_NO_CONTEXT, SurfaceType, ClientBufferAddress, eglImageAttributes);

// Create a texture and bind it to GL_TEXTURE_2D
EGLint TextureHandle;
glGenTextures(1, &TextureHandle);
glBindTexture(GL_TEXTURE_2D, TextureHandle);

// Attach the EGL Image to the same texture
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, eglImageHandle);
    
// Get the address and pitch (stride) of the new texture image
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_POINTER_KHR, &BitmapAddress);
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_PITCH_KHR, &BitmapPitch);
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_ORIGIN_KHR, &BitmapOrigin);
    
// Check for errors after each call to the EGL
if (eglGetError() != EGL_SUCCESS)
    break;
    
// Delete the EGL Image to free the memory when done
eglDestroyImageKHR(eglDisplayHandle, eglImageHandle);

Conclusion

One of the best ways to update an application with a tired 2D GUI is to exploit the accelerated OpenGL* ES features of Android on the Intel® Atom™ platform. Even though 2D and 3D are really different paradigms, the combination of the two is powerful. The trick is to make them cooperate by either sharing the frame buffer or sharing images through textures and the EGL* image extension. Use of this extension with OpenGL* ES is essential for achieving a good user experience, because the conventional method of loading textures with glTexImage2D() is too slow for dynamic images. Fortunately, this extension is well supported on most embedded platforms today, including Android.

https://software.intel.com/en-us/articles/using-opengl-es-to-accelerate-apps-with-legacy-2d-guis

EGLImage与纹理的更多相关文章

  1. OpenGL: 纹理采样 texture sample

    Sampler (GLSL) Sampler通常是在Fragment shader(片元着色器)内定义的,这是一个uniform类型的变量,即处理不同的片元时这个变量是一致不变的.一个sampler和 ...

  2. CSharpGL(10)两个纹理叠加

    CSharpGL(10)两个纹理叠加 本文很简单,只说明如何用shader实现叠加两个纹理的效果. 另外,最近CSharpGL对渲染框架做了修改,清理一些别扭的内容(DoRender()前后的事件都去 ...

  3. CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探

    CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...

  4. D3D三层Texture纹理经像素着色器实现渲染YUV420P

    简单记录一下这两天用Texture实现渲染YUV420P的一些要点. 在视频播放的过程中,有的时候解码出来的数据是YUV420P的.表面(surface)通过设置参数是可以渲染YUV420P的,但Te ...

  5. 【转】OpenGL多线程创建纹理,附加我的测试结果

    原文地址 http://www.cnblogs.com/mazhenyu/archive/2010/04/29/1724190.html 关于这个问题以前只知道多个线程不能同时使用一个RC,结果为了能 ...

  6. Mipmap与纹理过滤

    为了加快渲染速度和减少纹理锯齿,贴图被处理成由一系列被预先计算和优化过的图片组成的文件,这样的贴图被称为Mipmap. 使用DirectX Texture Tool(DX自带工具)预生成Mipmap ...

  7. WebGL入门教程(五)-webgl纹理

    前面文章: WebGL入门教程(一)-初识webgl WebGL入门教程(二)-webgl绘制三角形 WebGL入门教程(三)-webgl动画 WebGL入门教程(四)-webgl颜色 这里就需要用到 ...

  8. [转]各种移动GPU压缩纹理的使用方法

    介绍了各种移动设备所使用的GPU,以及各个GPU所支持的压缩纹理的格式和使用方法.1. 移动GPU大全 目前移动市场的GPU主要有四大厂商系列:1)Imagination Technologies的P ...

  9. [Unity] Shader(着色器)之纹理贴图

    在Shader中,我们除了可以设定各种光线处理外,还可以增加纹理贴图. 使用 settexture 命令可以为着色器指定纹理. 示例代码: Shader "Sbin/ff2" { ...

随机推荐

  1. 【转】Android自动化测试(UiAutomator)——UiObject

    本文主要讲解使用UiAutomator的一些技巧,希望对于初学者有一定的帮助 UiObject 1.首先要声明对象 UiObject XXX = new UiObject(new Selector) ...

  2. c++标准库之容器

    C++最原始的容器之一是数组.数组的特点有: 1.大小固定 2.单独存在的数组建立在栈上,作为对象成员存在的数组建立在堆上还是栈上则要看作为宿主对象是被建立在堆上还是栈上.栈空间是有限的,所以如果数组 ...

  3. Spring MVC文本域

    以下示例显示如何在使用Spring Web MVC框架的表单中使用文本域(TextArea).首先使用Eclipse IDE来创建一个WEB工程,并按照以下步骤使用Spring Web Framewo ...

  4. solr-in-action-ch4-Configuring Solr

    Solr基本的三个XML配置文件: solr.xml: solr 日志.shard.solrcould等配置 solrconfig.xml: 某个solr core的配置 schema.xml:某个s ...

  5. weblogic 8.1教程之部署(三)

    在 weblogic 都配置好了之后.就能够部署项目了. 部署项目的时候,能够大体分为两个步骤: 1,创建缓冲池: 2,配置数据源. 先启动 weblogicserver.进入weblogic 的主页 ...

  6. Linq中GroupBy方法的使用总结(转载)

    from:https://www.cnblogs.com/zhouzangood/articles/4565466.html Group在SQL经常使用,通常是对一个字段或者多个字段分组,求其总和,均 ...

  7. Android中AsyncTask的使用 (包含文件的下载与存储)

    今天看到大神写的相关详解Android中AsyncTask的使用,真的很是佩服,下面我将学习到的AsynTask知识运用到项目中,其中也涉及一些文件的下载与存储到本地 啥都不说了,直接上代码,我将对其 ...

  8. FileToolkit 文件工具箱

    import org.apache.commons.io.FileUtils; import org.apache.commons.io.filefilter.*; import org.apache ...

  9. Linux - Ubuntu Server基础

    Ubuntu Server:部署环境,用来部署项目的server系统. XShell:用来连接linux的工具.web项目要部署到远程服务器上,所以需要XShell来连接远程服务器. pycharm: ...

  10. Carries

    Carries frog has nn integers a1,a2,…,ana1,a2,…,an, and she wants to add them pairwise. Unfortunately ...