题目连接:Sherlock and MiniMax

Watson gives Sherlock an array A1,A2...AN
He asks him to find an integer M between P and Q(both inclusive), such that, min {|Ai-M|, 1 ≤ i ≤ N} is maximised. If there are multiple solutions, print the smallest one.

Input Format 
The first line contains N. The next line contains space separated N integers, and denote the array A. The third line contains two space separated integers denoting P and Q.

Output Format 
In one line, print the required answer.

Constraints 
1 ≤ N ≤ 102
1 ≤ Ai ≤ 109 
1 ≤ P ≤ Q ≤ 109

Sample Input

3
5 8 14
4 9

Sample Output

4

题解:难度为Diffcult的一道题,真的好难=。=

首先题目理解:给定一个数组a和两个整数P和Q,在区间[P,Q]中找到一个数M,使得min{a[i] - M}最大,即对于每一个[P,Q]之间的数m,将数组中的每个数和m求差的绝对值,那么这些绝对值里面就有一个最小值(比如题目中的例子,选择m=4,那么对应的3个差的绝对值是1,4,10,最小值就是1)。现在要做的就是选出这个m,使得这个最小值最大(比如如果选定m=5,那么对应的3个差的绝对值是0,3,9,最小值是0,就比刚才选4的时候得到的最小值小,所以m选4不选5)。

首先对原数组排序,那么对于[P,Q]之间的任意一个m,对应的差的绝对值如下图两种情况所示:

图一

在第一种情况中,最小值在端点处达到;在第二种情况中,最小值在转折点处达到,这都是由a数组有序以后得到的性质。那么我们想想在哪些地方可以达到最大的最小值。如小图所示,对于任意两个数,当且仅当取m为它们的中点(a[i]+a[i+1])/2的时候,得到的最小绝对值最大。所以就可以遍历所有的(a[i],a[i+1]),然后找出使得最小值最大的m作为M。

图二

在这个过程中,有一种情况就是(a[i],a[i+1])的中点不在[P,Q]内,那么最小值或者在[P,Q]中最靠近中点处取得(区间[P,Q]和区间[a[i],a[i+1]]有交集时候,在P或者Q取到最小值);或者[P,Q]和[a[i],a[i+1]]没有交集,即图一中第一种情况,最小值也在P或者Q处达到。那么我们为单独用O(n)的时间考察P和Q,遍历数组,找到最小值,然后查看是否可能成为最大的最小值。

总结一下算法:

  • 首先对数组a排序
  • 对于P和Q,利用O(N)的时间遍历数组,找到最小值,看能够成为最大的最小值;
  • 对于任意(a[i],a[i+1]),考察(a[i]+a[i+1])/2是否在[P,Q]内,如果在,考察此处得到的最小值是否能够成为最大的最小值,注意a[i]+a[i+1]为奇数时,要考察两个中点,它们都可能取得最小值。
  • 算法排序时间复杂度O(NlogN),单独处理P,Q及中点复杂度O(N),所以最终的算法时间复杂度为O(NlogN)。

代码如下:

 import java.io.*;
import java.util.*;
import java.math.*; public class Solution {
static int miniMax = 0;
static int miniMax_index = 0;
private static int mini_first_last(int[] a,int first_last){
//check for p
int mini = Integer.MAX_VALUE; for(int i = 0;i < a.length;i++){
mini = Math.min(mini,Math.abs(a[i]-first_last));
} return mini;
}
private static void middle(int index,int[] a,int p,int q){
int mini = Integer.MAX_VALUE;
int mini_index = 0;
int mid = (a[index]+a[index+1])/2;
if(mid >= p && mid <= q){
int m = Math.abs(a[index]-mid);
int n = Math.abs(a[index+1]-mid);
if(mini > Math.min(m, n)){
mini = Math.min(m, n);
mini_index = mid;
}
if(mid+1<=q && mid*2 != a[index] + a[index+1]){
m = Math.abs(a[index]-mid-1);
n = Math.abs(a[index+1]-mid-1);
if(mini > Math.min(m, n)){
mini = Math.min(m, n);
mini_index = mid+1;
}
}
if(mini != Integer.MAX_VALUE && miniMax < mini){
miniMax = mini;
miniMax_index = mini_index;
}
} }
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i = 0;i < n;i++)
a[i] = in.nextInt();
int p = in.nextInt();
int q = in.nextInt();
Arrays.sort(a); miniMax = mini_first_last(a, p);
miniMax_index = p; int temp = mini_first_last(a, q);
if(miniMax < temp){
miniMax = temp;
miniMax_index = q;
} for(int i = 0;i < n-1;i++){
middle(i, a, p, q);
}
System.out.println(miniMax_index);
}
}

【HackerRank】Sherlock and MiniMax的更多相关文章

  1. 【HackerRank】Sherlock and Array

    Watson gives an array A1,A2...AN to Sherlock. Then he asks him to find if there exists an element in ...

  2. 【HackerRank】 Sherlock and The Beast

    Sherlock and The Beast Sherlock Holmes is getting paranoid about Professor Moriarty, his archenemy. ...

  3. 【HackerRank】How Many Substrings?

    https://www.hackerrank.com/challenges/how-many-substrings/problem 题解 似乎是被毒瘤澜澜放弃做T3的一道题(因为ASDFZ有很多人做过 ...

  4. 【HackerRank】Running Time of Quicksort

    题目链接:Running Time of Quicksort Challenge In practice, how much faster is Quicksort (in-place) than I ...

  5. 【hackerrank】Week of Code 30

    Candy Replenishing Robot Find the Minimum Number 直接模拟 Melodious password dfs输出方案 Poles 题意:有多个仓库,只能从后 ...

  6. 【hackerrank】Week of Code 26

    在jxzz上发现的一个做题网站,每周都有训练题,题目质量……前三题比较水,后面好神啊,而且类型差不多,这周似乎是计数专题…… Army Game 然后给出n*m,问需要多少个小红点能全部占领 解法:乘 ...

  7. 【HackerRank】Median

    题目链接:Median 做了整整一天T_T 尝试了各种方法: 首先看了解答,可以用multiset,但是发现java不支持: 然后想起来用堆,这个基本思想其实很巧妙的,就是维护一个最大堆和最小堆,最大 ...

  8. 【HackerRank】Coin on the Table

    题目链接:Coin on the Table 一开始想用DFS做的,做了好久都超时. 看了题解才明白要用动态规划. 设置一个三维数组dp,其中dp[i][j][k]表示在时间k到达(i,j)所需要做的 ...

  9. 【HackerRank】Pairs

    题目链接:Pairs 完全就是Two Sum问题的变形!Two Sum问题是要求数组中和正好等于K的两个数,这个是求数组中两个数的差正好等于K的两个数.总结其实就是“骑驴找马”的问题:即当前遍历ar[ ...

随机推荐

  1. php 、asp、 java、 c#、 delphi之间的语言对照

    PHP是一种跨平台的server端的嵌入式脚本语言.它大量地借用C,Java和Perl语言的语法, 并耦合PHP自己的特性,使WEB开发人员能够高速地写出动态产生页面. 它支持眼下绝大多数数据库. 另 ...

  2. python 爬虫3 异常处理

    1.URLError 首先解释下URLError可能产生的原因: 网络无连接,即本机无法上网 连接不到特定的服务器 服务器不存在 在代码中,我们需要用try-except语句来包围并捕获相应的异常.下 ...

  3. 获取云硬盘列表bug

    有段时间没写博客了,主要还是刚进新公司,多少有点不适应(真会给自己找理由,明明是手里没技术,肚子里没货,能写啥!).前面几个星期都在修一修horizon的bug,这个没啥很大难度,就是用了一个djan ...

  4. 用sql语句,快速备份表数据

    1.SqlServer数据库 --DataTable 原数据表 --DataTable_20150717 要备份的新表名 select * into DataTable_20150717 from D ...

  5. UVA 10319 - Manhattan(2-SET)

    UVA 10319 - Manhattan 题目链接 题意:一个城市,有南北和东西街道.每种街道都是单行道,如今给定几个起点和终点.要求起点和终点必须最多转一次弯能够到达,问能否够满足全部的起点终点 ...

  6. 利用Lucene将被索引文件目录中的所有文件建立索引

    1.新建两个文件夹htm和index,其中htm中存放被索引的文件,index文件中存放建立的索引文件. 2.新建解析目录中所有文件的类,用来解析指定目录下的所有文件. import java.io. ...

  7. ubuntu12.04 安装nginx+php+mysql (lnmp)的web服务器环境

    1.Ubuntu12.04 安装nginx+php+mysql (lnmp)的web服务器环境 http://blog.db89.org/ubuntu12-04-install-nginx-php-m ...

  8. 1154 回文串划分(DP+Manacher)

    1154 回文串划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有一个字符串S,求S最少可以被划分为多少个回文串. 例如:abbaabaa,有多种划分方式. ...

  9. 打日志--以python为例

    日志报错要去修,要不然是隐患,总有一天会爆炸 增加日志是排错的好方法,不要不舍得加日志,比如怕代码变难看,怕日志输出太多. python logging exc_info sys.exc_info() ...

  10. 插叙LTE