【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束
【BZOJ1731】[Usaco2005 dec]Layout 排队布局
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。
Input
* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
1 3 10
2 4 20
2 3 3
INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 unitsapart, cows #2 and #4 must be no more than 20 units apart, and cows#2 and #3 dislike each other and must be no fewer than 3 units apart.
Sample Output
四只牛分别在0,7,10,27.
题解:闲着没事刷刷水~
先根据题中给的条件建出边,然后跑从1开始的最短路(注意不是最长路,因为每一条边代表的不是距离,是限制,所以最短路就是刚好满足所有限制的最长路),如果有负环,说明无法满足所有条件;如果没有更新到点n,说明1-n没有限制,可以无现长;否则答案就是最短路。
P.S.本人只跑了一遍最短路,可能有些无解的情况找不出来,所以应该先判无解,再判能否到n。然而数据比较水~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m1,m2,cnt;
int to[100000],next[100000],val[100000],head[1010],dis[1010],len[1010],inq[1010];
int pa[20010],pb[20010],pc[20010];
queue<int> q;
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
scanf("%d%d%d",&n,&m1,&m2);
int i,u,a,b,c;
memset(head,-1,sizeof(head));
for(i=2;i<=n;i++) add(i,i-1,0);
for(i=1;i<=m1;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for(i=1;i<=m2;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
memset(dis,0x3f,sizeof(dis));
q.push(1),dis[1]=0,len[1]=1;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+val[i])
{
dis[to[i]]=dis[u]+val[i],len[to[i]]=len[u]+1;
if(len[to[i]]>n)
{
printf("-1");
return 0;
}
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
if(dis[n]==0x3f3f3f3f) printf("-2");
else printf("%d",dis[n]);
return 0;
}
【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束的更多相关文章
- [Usaco2005 dec]Layout 排队布局 差分约束
填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...
- bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束
Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...
- bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...
- [bzoj1731] [Usaco2005 dec]Layout 排队布局
差分约束系统...因为题目要求的是1和n的最大距离所以这题就跑最长路.. 对于互相反感的牛(i与j互相反感,彼此距离至少为len,i<j),就有dis[j]-dis[i]>=len.就加一 ...
- 1731: [Usaco2005 dec]Layout 排队布局*
1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...
- bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】
差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...
- BZOJ1731:[USACO]Layout 排队布局(差分约束)
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- 【BZOJ】1731: [Usaco2005 dec]Layout 排队布局
[题意]给定按编号顺序站成一排的牛,给定一些约束条件如两牛距离不小于或不大于某个值,求1和n的最大距离.无解输出-1,无穷解输出-2. [算法]差分约束+最短路 [题解]图中有三个约束条件,依次分析: ...
- BZOJ 1731: [Usaco2005 dec]Layout 排队布局
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
随机推荐
- 微信小程序 - bindcontroltap和control的关系(map)
听说最近要废弃control,用cover-image和cover-view替代它,层级问题(我们此等萌新们还在想图标怎么显示在地图上(-.-)) 粗略的来说,一个展示(control),一个触发(b ...
- tcp/ip--百度百科
Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议.Inter ...
- js 值和类型
js中变量是没有类型的,只有值才有类型. 变量随时可以持有任何类型的值. <!DOCTYPE html> <html lang="zh"> <head ...
- Windows网络配置脚本
静态ip和动态ip切换 适用于:公司学校家庭的网络环境切换[请修改具体ip地址] ::ip for win7.bat::win8以上请用ipv4替换ip @echo off 设置为静态IP 设置为动态 ...
- 一种在MVC3框架里面设置模板页的方法,不使用_ViewStart
1.新建MasterFilterAttribute类继承ActionFilterAttribute,重写方法OnActionExecuted ,指定ViewResult的MasterName = &q ...
- GoogLeNet模型的微调
我从零开始训练了GoogLeNet模型. 但它没有给我带来希望的结果. 作为替代,我想对我的数据集中的GoogLeNet模型进行微调. 有谁知道我应该遵循什么步骤? 采纳答案: 假设你正在尝试做图像分 ...
- linux 自启动
使用chkconfig命令可以查看在不同启动级别下课自动启动的服务(或是程序),命令格式如下:chkconfig --list可能输出如下:openvpn 0:关闭 1:开启 ...... 6:关闭 ...
- mac下使用QuickTime录屏及上传youku注意事项
一,解决QuickTime录屏不能带声音的问题: mac下使用QuickTime屏幕 Soundflower->Audio Setup->soundflower(2ch),在其上鼠标右键, ...
- Atitit.软件开发的非功能性需求attilax 总结
Atitit.软件开发的非功能性需求attilax 总结 1. 运行环境约束:用户对软件系统运行环境的要求. 1 2. 兼容性 2 3. 7.6 数据库 database (imp by ati) ...
- C++语言基础(7)-inline内联函数
函数调用是有时间和空间开销的.程序在执行一个函数之前需要做一些准备工作,要将实参.局部变量.返回地址以及若干寄存器都压入栈中,然后才能执行函数体中的代码:函数体中的代码执行完毕后还要清理现场,将之前压 ...