【BZOJ1731】[Usaco2005 dec]Layout 排队布局

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离。

Input

* Line 1: Three space-separated integers: N, ML, and MD. * Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. * Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

* Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3
INPUT DETAILS:
There are 4 cows. Cows #1 and #3 must be no more than 10 unitsapart, cows #2 and #4 must be no more than 20 units apart, and cows#2 and #3 dislike each other and must be no fewer than 3 units apart.

Sample Output

27
四只牛分别在0,7,10,27.

题解:闲着没事刷刷水~

先根据题中给的条件建出边,然后跑从1开始的最短路(注意不是最长路,因为每一条边代表的不是距离,是限制,所以最短路就是刚好满足所有限制的最长路),如果有负环,说明无法满足所有条件;如果没有更新到点n,说明1-n没有限制,可以无现长;否则答案就是最短路。

P.S.本人只跑了一遍最短路,可能有些无解的情况找不出来,所以应该先判无解,再判能否到n。然而数据比较水~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
int n,m1,m2,cnt;
int to[100000],next[100000],val[100000],head[1010],dis[1010],len[1010],inq[1010];
int pa[20010],pb[20010],pc[20010];
queue<int> q;
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
scanf("%d%d%d",&n,&m1,&m2);
int i,u,a,b,c;
memset(head,-1,sizeof(head));
for(i=2;i<=n;i++) add(i,i-1,0);
for(i=1;i<=m1;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
for(i=1;i<=m2;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
memset(dis,0x3f,sizeof(dis));
q.push(1),dis[1]=0,len[1]=1;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+val[i])
{
dis[to[i]]=dis[u]+val[i],len[to[i]]=len[u]+1;
if(len[to[i]]>n)
{
printf("-1");
return 0;
}
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
if(dis[n]==0x3f3f3f3f) printf("-2");
else printf("%d",dis[n]);
return 0;
}

【BZOJ1731】[Usaco2005 dec]Layout 排队布局 差分约束的更多相关文章

  1. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  2. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  3. bzoj 1731 [Usaco2005 dec]Layout 排队布局——差分约束

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1731 对差分约束理解更深.还发现美妙博客:http://www.cppblog.com/me ...

  4. [bzoj1731] [Usaco2005 dec]Layout 排队布局

    差分约束系统...因为题目要求的是1和n的最大距离所以这题就跑最长路.. 对于互相反感的牛(i与j互相反感,彼此距离至少为len,i<j),就有dis[j]-dis[i]>=len.就加一 ...

  5. 1731: [Usaco2005 dec]Layout 排队布局*

    1731: [Usaco2005 dec]Layout 排队布局 题意: n头奶牛在数轴上,不同奶牛可以在同个位置处,编号小的奶牛必须在前面.m条关系,一种是两头奶牛距离必须超过d,一种是两头奶牛距离 ...

  6. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  7. BZOJ1731:[USACO]Layout 排队布局(差分约束)

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  8. 【BZOJ】1731: [Usaco2005 dec]Layout 排队布局

    [题意]给定按编号顺序站成一排的牛,给定一些约束条件如两牛距离不小于或不大于某个值,求1和n的最大距离.无解输出-1,无穷解输出-2. [算法]差分约束+最短路 [题解]图中有三个约束条件,依次分析: ...

  9. BZOJ 1731: [Usaco2005 dec]Layout 排队布局

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

随机推荐

  1. MySQL触发器 trigger之after与before区分

    after:是先完毕数据的增删改,然后再触发.触发的语句晚于监视的增删改,无法影响前面的增删修改作.也就是说先插入订单记录.再更新商品数量.当商品数量少于订单数量时造成爆库. before:先完毕触发 ...

  2. PHP-Header缓存策略

    Expires.Cache-Control.Last-Modified.ETag 是RFC 2616(HTTP/1.1)协议中和网页缓存相关的几个字段.前两个用来控制缓存的失效日期,后两个用来验证网页 ...

  3. EMQ ---100万线连接测试说明

    注解 EMQ 2.0 消息服务器默认设置,允许最大客户端连接是512,因为大部分操作系统 ‘ulimit -n’ 限制为1024. EMQ 消息服务器1.1.3版本,连接压力测试到130万线,8核心/ ...

  4. C++ Primer Plus的若干收获--(二)

    哎,真是不想吐槽考驾照的艰辛历程了.跑到大西郊,顶着大太阳,一天就能摸上个十几分钟二十分钟的车,简直不要太坑爹,这两天真是做的我屁股疼的不行. .. 今天果断不去了.仅仅可惜我的大阿根廷啊,坚持到最后 ...

  5. Mac 上的传奇效率神器 Alfred 3

    下载地址:https://www.alfredapp.com/ 第三方教程:https://www.jianshu.com/p/e9f3352c785f 一.内置快捷键介绍 1.默认快捷呼出热键是: ...

  6. webpack 通用环境快速搭建

    能用babel编译es2015 . 能热编译.能加载静态资源(js/css/font/image).是一个很通用的开发环境,虽然不智能.但很好扩展 npm 安装列表: # webpack 核心 npm ...

  7. SGDMA-----Scatter-gather DMA

    Scatter-gather DMA 使用一个链表描述物理上不连续的存储空间,然后把链表首地址告诉DMA master.DMA master在传输完一块物理连续的数据后,不用发起中断,而是根据链表来传 ...

  8. MVC 实现表格数据导出Excel(NPOI方式)

    前端View(@ViewBag为查询条件): <span id="exprobtn" class="btn_blue" style="dispa ...

  9. protobuf 在win10系统如何编译jar包

    最近在搞java服务器项目,前段要求用protobuf进行数据传输,以前没搞过,查了很多资料,走了一些弯路! 先把一些需要下载的链接放上来: protobuf下载地址:https://github.c ...

  10. Android JNI和NDK学习(02)--静态方式实现JNI(转)

    本文转自:http://www.cnblogs.com/skywang12345/archive/2013/05/23/3095013.html JNI包括两种实现方法:静态和动态.两种方法的区别如下 ...