动态规划(DP),0-1背包问题
题目链接:http://poj.org/problem?id=3624
1、p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解。
2、递推公式
p[i][j]=max(p[i+1][j],p[i+1][j-w[i]]+v[i]);
#include <stdio.h>
#include <algorithm>
#include <string.h>
#define NUM 3410 //物品数量的上限
#define CAP 1300 //背包容量的上限 using namespace std; int w[NUM];//物品的重量
int v[NUM];//物品的价值
int p[NUM][CAP];//p[i][j]表示背包容量为j时,可选物品为i,i+1,...n时的01背包问题的最优解
//题意就是求p[1][c]; //递推表达式即为p[i][j]=max(p[i+1][j],p[i+1][j-w[i]]+v[i]);
//下面递推求出p[1][c];
void knapsack(int c,int n)//c为背包容量,n为物品的数量
{
//计算递推边界
int jMax=min(w[n]-,c);
for(int j=; j<=jMax; j++)
p[n][j]=;//第n个物品,这里都装不下
for(int j=w[n]; j<=c; j++)
p[n][j]=v[n];//第n个物品,这里都装得下
//开始递推计算到p[2][c];
for(int i=n-; i>; i--)
{
jMax=min(w[i]-,c);
for(int j=; j<=jMax; j++)
p[i][j]=p[i+][j];//装不下
for(int j=w[i]; j<=c; j++)
p[i][j]=max(p[i+][j],p[i+][j-w[i]]+v[i]);
}
p[][c]=p[][c];
if(c>=w[])
p[][c]=max(p[][c],p[][c-w[]]+v[]);
} void traceback(int c,int n,int x[])
{
for(int i=;i<n;i++)
{
if(p[i][c]==p[i+][c])
x[i]=;
else
{
x[i]=;
c=c-w[i];
}
}
x[n]=(p[n][c])?:;
} int main()
{
int memory[NUM];
int C,N;///C为容量,N为物品个数
while(scanf("%d%d",&N,&C)!=EOF)
{
memset(p,,sizeof(p));
for(int i=; i<=N; i++)
{
scanf("%d",&w[i]);
scanf("%d",&v[i]);
}
knapsack(C,N);
printf("%d\n",p[][C]);
traceback(C,N,memory);
for(int i=;i<=N;i++)
printf("%d ",memory[i]);
return ;
}
}
但是,很遗憾,Runtime Error
这里可以转化为一维DP
p[i]表示背包容量为i 时的最优解
memset(p,0,sizeof(p));
然后遍历所有物品,更新p
递推公式:
for(int i=;i<=n;i++)
{
for(int j=W;j>=;j--)
{
if(j>w[i]&&p[j-w[i]]+val[i]>p[j])
p[i]=p[j-w[i]]+val[i];
}
}
Source Code
#include <stdio.h>
#include <string.h>
#define N 3500 ///物品数量上限
#define M 13000///背包容量上限 int w[N];///物品重量
int val[N];///物品价值
int p[M];///p[i]表示背包容量为i时的最优解
int n;///物品个数
int W;///背包容量 ///求p[W];
void knapsack()
{
int i,j;
memset(p,,sizeof(p));
for(i=;i<=n;i++)
{
for(j=W;j>=;j--)
{
///当前第i个物品装得下,而且比不装要优
if(j>=w[i]&&p[j-w[i]]+val[i]>p[j])
p[j]=p[j-w[i]]+val[i];
}
}
return ;
} int main()
{
int i;
while(scanf("%d%d",&n,&W)!=EOF)
{
for(i=;i<=n;i++)
scanf("%d%d",&w[i],&val[i]);
knapsack();
printf("%d\n",p[W]);
}
return ;
}
动态规划(DP),0-1背包问题的更多相关文章
- hdu2602Bone Collector ——动态规划(0/1背包问题)
Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...
- 0/1背包问题(DP)
Description 给定 n 个物品和一个背包.物品 i 的重量是 wi ,其价值为 vi ,背包的容量为 C .问:应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? Input 输入 ...
- 算法-动态规划DP小记
算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...
- 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列
0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...
- 蓝桥杯 0/1背包问题 (java)
今天第一次接触了0/1背包问题,总结一下,方便以后修改.不对的地方还请大家不啬赐教! 上一个蓝桥杯的例题: 数据规模和约定 代码: import java.util.Scanner; public ...
- 动态规划:HDU1059-Dividing(多重背包问题的二进制优化)
Dividing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 2084 数塔 (动态规划DP)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2084 题目分析:此题采用动态规划自底向上计算,如果我们要知道所走之和最大,那么最后一步肯定是走最后一排 ...
- 动态规划dp
一.概念:动态规划dp:是一种分阶段求解决策问题的数学思想. 总结起来就一句话:大事化小,小事化了 二.例子 1.走台阶问题 F(10):10级台阶的走法数量 所以:F(10)=F(9)+F(8) F ...
- [JL]最后的晚餐 动态规划(DP) codevs5318
[JL]最后的晚餐 TimeLimit:1000MS MemoryLimit:1000KB 64-bit integer IO format:%lld Problem Description [题库 ...
- Jury Compromise---poj1015(动态规划,dp,)
题目链接:http://poj.org/problem?id=1015 大致题意: 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n 个人作为陪审团的候 ...
随机推荐
- spring IoC源码分析 (3)Resource解析
引自 spring IoC源码分析 (3)Resource解析 定义好了Resource之后,看到XmlFactoryBean的构造函数 public XmlBeanFactory(Resource ...
- 2019.03.26 读书笔记 关于event
event 主要是给委托加了一层保护,不能任意的 class.delegate=null,class.delegate=fun1,不能由调用者去任意支配,而是由class自己去增加或减少,用+=.-= ...
- Oracle 数据库和Sql Server数据库的区别
Oracle数据库的访问方式,和SqlServer数据库是有很大差别的,下面用图来说明: 1.Sql Server数据库 SqlServer数据库的访问方式,大致是:假设用户通过sa登录SqlServ ...
- 分享:JAVA和C# 3DES加密解密
最近 一个项目.net 要调用JAVA的WEB SERVICE,数据采用3DES加密,涉及到两种语言3DES一致性的问题,下面分享一下,这里的KEY采用Base64编码,便用分发,因为Java的Byt ...
- 抱歉最近朋友结婚去浪了几天~未来几天会正常更新.今天带来XML文件解析
三种解析方法 DOM,SAX,XMLPullParse;你以为我要讲三种嘛 错 ,我只讲一种 ,其他两种我只是说下优缺点, 一.DOM解析器 优点: DOM解析器在解析XML文档时,会把文档中的所有元 ...
- VS2010中VC++目录和C/C++之间的区别。VC++ Directories和C/C++的区别。
首先,这是个历史遗留问题,说起来比较复杂.其次,这个问题在微软的MSDN博客上已经专门被说起过了,英文好的请直接移步到原文:<VC++ Directories>.另外,stack over ...
- Python sh模块--------替换subprocess的利器
官方文档有句话"allows you to call any program",并且: helps you write shell scripts in Python by giv ...
- 【Shell】按行读取文件内容
方法1:while循环中执行效率最高,最常用的方法. function while_read_LINE_bottm(){ While read LINE do echo $LINE done < ...
- goto语句和标签
goto 语句用于将执行流更改到标签处,虽然t-sql和pl/sql都提供了该语句,但是作为编程而言,我们不推荐使用此编程技术.要编写一个标签,应当在标识符后面加一个冒号.列如,下面示例使用goto语 ...
- 每隔5s执行一次动作
TimeSpan timespan; //第一次获取系统时间 DateTime d1 = DateTime.Now; while (true) { //第二次获取系统时间 DateTime d2 = ...