Codeforces #55D (数位dp+离散化)
Description
Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.
Input
The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).
Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).
Output
Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).
Sample Input
1
1 9
9
1
12 15
2 让你找[l,r]区间中,能被自己各个非零数位整除的数的个数。一看就是满足区间减法。现在就讨论怎么求就行了。
首先lcm(1..9)=2520, int MOD=2520;保存每一个数是不现实的,所以我们就.保存x%MOD就行了。
preSum表示已经讨论的前面的几个数位的值(前串),preLcm表示前穿的Lcm。
这里注意到1...9的各种lcm可以离散化处理,只有48个,这样可以大大减少数组的空间。
我们再用flag来表示当前位的数字大小是否超过x对应位的大小
例:x=15666;当我们讨论到千位是1,2,3,4时,后面三位是随便选的,讨论千位是5是,百位就不能随便选了,要<=6,此时在千位我们就达到了边界。
剩下的交给dfs。
PS:有人把2520优化成252的,92ms过了...我1122ms...
代码如下:
#include <bits/stdc++.h> using namespace std; const int MAXN=;
const int MOD=;
long long dp[MAXN][MOD][];//dp[i][j][k]表示处理到第i位,前串数(取模后)是j,前串树lcm是k时,后面位随便变的合法情况的个数
int index[MOD+],bit[MAXN];//index表示1..9的各种组合lcm,bit是将数字的每一位拆开保存
long long int gcd (long long int a,long long int b) {return (b==)?a:gcd(b,a%b);}
long long int lcm (long long int a,long long int b){return a/gcd(a,b)*b;}
void init()//来找1...9之间各种组合的lcm
{
int num=;
for (int i=;i<=MOD;++i)
if (MOD%i==)
index[i]=num++;
}
long long dfs (int pos,int preSum,int preLcm,bool flag)//pos当前位,flag前面几位是否达到边界
{
if (pos==-)//讨论到最后一位
return preSum%preLcm==;//如果这个数满足要求,+1
if (!flag && dp[pos][preSum][index[preLcm]]!=-)//没达到边界而且访问过这个状态
return dp[pos][preSum][index[preLcm]];//直接return,记忆化搜索
long long ans=;
int endd=flag?bit[pos]:;//这位达到边界时,下一位从0到x的对应位变化。没达到边界是0...9变化
for (int i=;i<=endd;i++)
{
int nowSum=(preSum*+i)%MOD;//添加下一位数字,然后更新状态
int nowLcm=preLcm;
if (i)
nowLcm=lcm(nowLcm,i);
ans+=dfs(pos-,nowSum,nowLcm,flag&&i==endd);
}
if (!flag)
dp[pos][preSum][index[preLcm]]=ans;
return ans;
}
long long calc (long long x)
{
memset(bit,,sizeof bit);
int pos=;
while (x)
{
bit[pos++]=x%;
x/=;
}
return dfs(pos-,,,);
}
int main()
{
int t;
long long int l,r;
init();
memset(dp,-,sizeof dp);
scanf("%d",&t);
while (t--)
{
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",calc(r)-calc(l-));
}
return ;
}
Codeforces #55D (数位dp+离散化)的更多相关文章
- Codeforces 55D (数位DP+离散化+数论)
题目链接: http://poj.org/problem?id=2117 题目大意:统计一个范围内数的个数,要求该数能被各位上的数整除.范围2^64. 解题思路: 一开始SB地开了10维数组记录情况. ...
- codeforces 55D 数位dp
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)
传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...
- codeforces 55D - Beautiful numbers(数位DP+离散化)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces 628D 数位dp
题意:d magic number(0<=d<9)的意思就是一个数,从最高位开始奇数位不是d,偶数位是d 题目问,给a,b,m,d(a<=b,m<2000)问,a,b之间有多少 ...
- codeforces 401D (数位DP)
思路:很明显的数位dp,设dp[i][j] 表示选取数字的状态为i,模m等于j的数的个数,那么最后的答案就是dp[(1<<n)-1][0].状态转移方程就是,dp[i|(1<< ...
- Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)
大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...
- Codeforces - 914C 数位DP
题意有点难以描述,简略的就是给定一个二进制\(n\),每一步操作能使\(n\)的位为1的数的和转化为一个十进制,然后转化为该数的二进制再进行相同的操作 查询\([0,n]\)中操作数恰好为\(k\)的 ...
- Codeforces 13C Sequence --DP+离散化
题意:给出一个 n (1 <= n <= 5000)个数的序列 .每个操作可以把 n 个数中的某一个加1 或 减 1.问使这个序列变成非递减的操作数最少是多少 解法:定义dp[i][j]为 ...
随机推荐
- Angular JS - 2 - angularjs helloworld
材料下载 https://github.com/liuch0228/AngularJS-learn.git 1.使用原生jquery实现 实现输入框内容 在页面上跟随输入值动态更新 项目路径 < ...
- Java Web学习总结(11)JDBC
一,简介 JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的 ...
- Luogu P1478 陶陶摘苹果
Luogu P1478 陶陶摘苹果(升级版) 题目描述 又是一年秋季时,陶陶家的苹果树结了n个果子.陶陶又跑去摘苹果,这次她有一个a公分的椅子.当他手够不着时,他会站到椅子上再试试. 这次与NOIp2 ...
- xunit的assert常用部分方法解释
布尔:True(返回bool的方法或者字段) 判断是否为trueFalse(返回bool的方法或者字段) 判断是否为false 字符串(区分大小写):Equal(期待结果,实际结果) 判断输出值和期待 ...
- mysql8.0 新特性,对json类型的常用操作
mysql8 新特性-json数据类型操作 -- 根据key(可多个)获取value SELECT JSON_EXTRACT('{"id": 14, "name" ...
- Python Django 编写一个简易的后台管理工具2-创建项目
django-admin 创建项目 pycharm 创建项目
- redis 服务器端安装(三)
redis 服务器端安装(三) Redis is an open source, BSD licensed, advanced key-value store. It is often referre ...
- CentOS 7下升级python版本到3.X
由于python官方已宣布2.x系列即将停止支持,为了向前看,我们升级系统的python版本为3.x系列服务器系统为当前最新的CentOS 7.4 1.安装前查看当前系统下的python版本号 # p ...
- Html5 学习笔记 Sublime text3 和 Emmet 插件
下载地址 :https://pan.baidu.com/s/1MpkaYdAcZd6RmPpmvOdK7w Emmet 压缩包 并且解压: 安装 Sublime Text 3, 选择首选项 浏览插件 ...
- 一些关于SEO优化的笔记
高级搜索指令: 双引号:“xxx” 代表完全匹配的搜索 减号:-(减号前面必须是空格,后面必须没有空格)代表搜索不包含减号后面的词的页面 filetype:用于搜索特定文件格式(百度支持的文件类型:P ...