Description

Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

Input

The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

Output

Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).

Sample Input

Input
1
1 9
Output
9
Input
1
12 15
Output
2

让你找[l,r]区间中,能被自己各个非零数位整除的数的个数。一看就是满足区间减法。现在就讨论怎么求就行了。
首先lcm(1..9)=2520, int MOD=2520;保存每一个数是不现实的,所以我们就.保存x%MOD就行了。
preSum表示已经讨论的前面的几个数位的值(前串),preLcm表示前穿的Lcm。
这里注意到1...9的各种lcm可以离散化处理,只有48个,这样可以大大减少数组的空间。
我们再用flag来表示当前位的数字大小是否超过x对应位的大小
例:x=15666;当我们讨论到千位是1,2,3,4时,后面三位是随便选的,讨论千位是5是,百位就不能随便选了,要<=6,此时在千位我们就达到了边界。
剩下的交给dfs。
PS:有人把2520优化成252的,92ms过了...我1122ms...
代码如下:
 #include <bits/stdc++.h>

 using namespace std;

 const int MAXN=;
const int MOD=;
long long dp[MAXN][MOD][];//dp[i][j][k]表示处理到第i位,前串数(取模后)是j,前串树lcm是k时,后面位随便变的合法情况的个数
int index[MOD+],bit[MAXN];//index表示1..9的各种组合lcm,bit是将数字的每一位拆开保存
long long int gcd (long long int a,long long int b) {return (b==)?a:gcd(b,a%b);}
long long int lcm (long long int a,long long int b){return a/gcd(a,b)*b;}
void init()//来找1...9之间各种组合的lcm
{
int num=;
for (int i=;i<=MOD;++i)
if (MOD%i==)
index[i]=num++;
}
long long dfs (int pos,int preSum,int preLcm,bool flag)//pos当前位,flag前面几位是否达到边界
{
if (pos==-)//讨论到最后一位
return preSum%preLcm==;//如果这个数满足要求,+1
if (!flag && dp[pos][preSum][index[preLcm]]!=-)//没达到边界而且访问过这个状态
return dp[pos][preSum][index[preLcm]];//直接return,记忆化搜索
long long ans=;
int endd=flag?bit[pos]:;//这位达到边界时,下一位从0到x的对应位变化。没达到边界是0...9变化
for (int i=;i<=endd;i++)
{
int nowSum=(preSum*+i)%MOD;//添加下一位数字,然后更新状态
int nowLcm=preLcm;
if (i)
nowLcm=lcm(nowLcm,i);
ans+=dfs(pos-,nowSum,nowLcm,flag&&i==endd);
}
if (!flag)
dp[pos][preSum][index[preLcm]]=ans;
return ans;
}
long long calc (long long x)
{
memset(bit,,sizeof bit);
int pos=;
while (x)
{
bit[pos++]=x%;
x/=;
}
return dfs(pos-,,,);
}
int main()
{
int t;
long long int l,r;
init();
memset(dp,-,sizeof dp);
scanf("%d",&t);
while (t--)
{
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",calc(r)-calc(l-));
}
return ;
}
 

Codeforces #55D (数位dp+离散化)的更多相关文章

  1. Codeforces 55D (数位DP+离散化+数论)

    题目链接: http://poj.org/problem?id=2117 题目大意:统计一个范围内数的个数,要求该数能被各位上的数整除.范围2^64. 解题思路: 一开始SB地开了10维数组记录情况. ...

  2. codeforces 55D 数位dp

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  3. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  4. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces 628D 数位dp

    题意:d magic number(0<=d<9)的意思就是一个数,从最高位开始奇数位不是d,偶数位是d 题目问,给a,b,m,d(a<=b,m<2000)问,a,b之间有多少 ...

  6. codeforces 401D (数位DP)

    思路:很明显的数位dp,设dp[i][j] 表示选取数字的状态为i,模m等于j的数的个数,那么最后的答案就是dp[(1<<n)-1][0].状态转移方程就是,dp[i|(1<< ...

  7. Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)

    大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...

  8. Codeforces - 914C 数位DP

    题意有点难以描述,简略的就是给定一个二进制\(n\),每一步操作能使\(n\)的位为1的数的和转化为一个十进制,然后转化为该数的二进制再进行相同的操作 查询\([0,n]\)中操作数恰好为\(k\)的 ...

  9. Codeforces 13C Sequence --DP+离散化

    题意:给出一个 n (1 <= n <= 5000)个数的序列 .每个操作可以把 n 个数中的某一个加1 或 减 1.问使这个序列变成非递减的操作数最少是多少 解法:定义dp[i][j]为 ...

随机推荐

  1. springmvc的请求参数

    @RequestMapping("/testRequestParam") public String testRequestParam(@RequestParam("us ...

  2. linux0.11源码内核——系统调用,int80的实现细节

    linux0.11添加系统调用的步骤 假设添加一个系统调用foo() 1.修改include/linux/sys.h 添加声明 extern int foo(); 同时在sys_call_table数 ...

  3. 前端每日实战:99# 视频演示如何用纯 CSS 创作一个过山车 loader

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/KBxYZg/ 可交互视频 此视频是 ...

  4. label runat="server"

    <label id="lblWhiteIp_Text_Info" runat="server"></label> 后台对应的类型是 pr ...

  5. 【原】webpack--文件监听的原理

    轮询判断文件的最后编辑时间是否发生变化,一开始有个文件的修改时间,先存储起来这个修改时间,下次再有修改就会和上次修改时间比对,发现不一致的时候不会立即告诉监听者,而是把文件修改缓存起来,等待一段时间, ...

  6. python接口自动化测试三十四:github上某接口测试平台及配置

    TeserHome地址:https://testerhome.com/opensource_projects/60前端:https://github.com/pencil1/ApiTestWeb 实现 ...

  7. swoole 多进程共享数据

    进程作为程序执行过程中资源分配的基本单位,拥有独立的地址空间,同一进程的线程可以共享本进程的全局变量,静态变量等数据和地址空间,但进程之间资源相互独立.由于PHP语言不支持多线程,因此Swoole使用 ...

  8. Html5 学习笔记 【PC固定布局】 实战5 咨询页面 侧栏

    最终效果图: 提出公共页脚和导航部分: 新建infomatino.html (旅游咨询)页面 <!DOCTYPE html> <html lang="zh-cn" ...

  9. PAT_A1073#Scientific Notation

    Source: PAT A1073 Scientific Notation (20 分) Description: Scientific notation is the way that scient ...

  10. Cocos2d 之FlyBird开发---GameData类

    |   版权声明:本文为博主原创文章,未经博主允许不得转载. 现在是大数据的时代,绝大多数的游戏也都离不开游戏数据的控制,简单的就是一般记录游戏的得分情况,高端大气上档次一点的就是记录和保存各方面的游 ...