description


analysis

  • 需要知道一棵树的重心一定在从根出发的重链上,可以考虑先进行树链剖分弄出重儿子和次重儿子,再倍增维护重儿子

  • 由于重链上有一个或两个重心,接下来求的重心都是深度较大的,只需判断其父节点是否也满足重心的性质即可

  • 现在要断掉一条边\((x,y)\),假设\(x\)是\(y\)的父亲,需要分别求出\(y\)的子树的重心、以及除了\(y\)的子树以外的树的重心

  • 倍增数组已经维护好了所以\(y\)的重心很好求,对于视作\(x\)为根的子树则需要重新维护一次倍增数组

  • 若\(y\)是重儿子则用次重儿子与\(x\)父亲\(size\)比较,否则用原来的重儿子比;知道了重儿子则可以重新算倍增数组

  • 然后把\(x\)设为\(y\)的儿子,其实就是换根操作,递归下去求解,回溯时重新再算\(x\)的倍增数组;时间复杂度\(O(n\log n)\)


code

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define MAXN 300005
#define MAXM MAXN*2
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
#define rep(i,a) for (reg i=las[a];i;i=nex[i]) using namespace std; ll las[MAXM],nex[MAXM],tov[MAXM];
ll fa[MAXN],size[MAXN],tsize[MAXN],hson[MAXN],secson[MAXN];
ll son[MAXN][20];
ll n,T,tot,ans,log2n; inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll max(ll x,ll y){return x>y?x:y;}
inline ll min(ll x,ll y){return x<y?x:y;}
inline void link(ll x,ll y){nex[++tot]=las[x],las[x]=tot,tov[tot]=y;} inline void dfs1(ll x,ll y)
{
size[x]=1,fa[x]=y;
rep(i,x)if (tov[i]!=y)
{
dfs1(tov[i],x),size[x]+=size[tov[i]];
if (size[tov[i]]>size[hson[x]])secson[x]=hson[x],hson[x]=tov[i];
else if (size[tov[i]]>size[secson[x]])secson[x]=tov[i];
}
tsize[x]=size[x],son[x][0]=hson[x];
}
inline void dfs2(ll x,ll y)
{
rep(i,x)if (tov[i]!=y)
{
if (tov[i]==hson[x])son[x][0]=secson[x];
else son[x][0]=hson[x];
if (size[y]>size[son[x][0]])son[x][0]=y;
fo(k,1,log2n)son[x][k]=son[son[x][k-1]][k-1]; size[x]=n-tsize[tov[i]],size[tov[i]]=tsize[tov[i]],fa[x]=fa[tov[i]]=0; ll now=x;
fd(k,log2n,0)if (son[now][k] && size[x]-size[son[now][k]]<=size[x]/2)now=son[now][k];
if (max(size[son[now][0]],size[x]-size[now])<=size[x]/2)ans+=now;
if (max(size[son[fa[now]][0]],size[x]-size[fa[now]])<=size[x]/2)ans+=fa[now]; now=tov[i];
fd(k,log2n,0)if (son[now][k] && size[tov[i]]-size[son[now][k]]<=size[tov[i]]/2)now=son[now][k];
if (max(size[son[now][0]],size[tov[i]]-size[now])<=size[tov[i]]/2)ans+=now;
if (max(size[son[fa[now]][0]],size[tov[i]]-size[fa[now]])<=size[tov[i]]/2)ans+=fa[now]; fa[x]=tov[i],dfs2(tov[i],x);
}
fa[x]=y,son[x][0]=hson[x],size[x]=tsize[x];
fo(k,1,log2n)son[x][k]=son[son[x][k-1]][k-1];
}
int main()
{
T=read();
while (T--)
{
memset(las,0,sizeof(las)),memset(nex,0,sizeof(nex));
memset(tov,0,sizeof(tov)),memset(secson,0,sizeof(secson));
memset(fa,0,sizeof(fa)),memset(son,0,sizeof(son)),memset(hson,0,sizeof(hson));
n=read(),log2n=(ll)log2(n),ans=tot=0;
fo(i,1,n-1){ll x=read(),y=read();link(x,y),link(y,x);}
dfs1(1,0);
fo(j,1,log2n)fo(i,1,n)son[i][j]=son[son[i][j-1]][j-1];
dfs2(1,0),printf("%lld\n",ans);
}
return 0;
}

【JZOJ6435】【luoguP5666】【CSP-S2019】树的重心的更多相关文章

  1. 【CSP模拟赛】仔细的检查(树的重心&树hash)

    题目描述 nodgd家里种了一棵树,有一天nodgd比较无聊,就把这棵树画在了一张纸上.另一天nodgd更无聊,就又画了一张.  这时nodgd发现,两次画的顺序是不一样的,这就导致了原本的某一个节点 ...

  2. POJ3107Godfather[树形DP 树的重心]

    Godfather Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6121   Accepted: 2164 Descrip ...

  3. poj1655 树的重心 树形dp

    树的重心定义为:找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后,生成的多棵树尽可能平衡. 处理处每个节点的孩子有几个,和树的大小就好了. #include< ...

  4. poj3107 求树的重心(&& poj1655 同样求树的重心)

    题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...

  5. 树形DP求树的重心 --SGU 134

    令一个点的属性值为:去除这个点以及与这个点相连的所有边后得到的连通分量的节点数的最大值. 则树的重心定义为:一个点,这个点的属性值在所有点中是最小的. SGU 134 即要找出所有的重心,并且找出重心 ...

  6. 求树的重心(POJ1655)

    题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...

  7. codeforces 685B Kay and Snowflake 树的重心

    分析:就是找到以每个节点为根节点的树的重心 树的重心可以看这三篇文章: 1:http://wenku.baidu.com/link?url=yc-3QD55hbCaRYEGsF2fPpXYg-iO63 ...

  8. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  9. POJ3107--Godfather(树的重心)

    vector建图被卡了..改为链式前向星500ms过的..差了四倍多?... 表示不太会用链表建图啊..自己试着写的,没看模板..嗯..果然错了..落了一句话orz 树的重心就是找到一个树中一个点,其 ...

随机推荐

  1. setattr(object, name, value)¶

    This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value. ...

  2. Tomcat访问任意磁盘的图片资源

    项目中用户上传的大量图片存放在项目底下带来诸多不便.每次部署项目都需要拷贝出来,防止覆盖掉以前的 图片.容易丢失,前功尽弃.甚至造成经济损失.不可估量. 如何配置tomcat访问图片路径呢?首页你代码 ...

  3. 确保数据零丢失!阿里云数据库RDS for MySQL 三节点企业版正式商用

    2019年10月23号,阿里云数据库RDS for MySQL 三节点企业版正式商用,RDS for MySQL三节点企业版基于Paxos协议实现数据库复制,每个事务日志确保至少同步两个节点,实现任意 ...

  4. POJ 3468 A Simple Problem with Integers(线段树区间修改及查询)

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  5. AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡

    题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思 ...

  6. 解析crontab php自动运行的方法

    crontab是linux自带的一个命令 使php自动运行的方法php自动运行有很多方法,这里分以下DZ以及一些通过系统完成的方法和直接触发运行驻留系统的方法.Discuz后台有个计划任务,可以使ph ...

  7. PostgreSQL角色和权限

      PostgreSQL是通过角色来管理数据库访问权限的,我们可以将一个角色看成是一个数据库用户,或者一组数据库用户.角色可以拥有数据库对象,如表.索引,也可以把这些对象上的权限赋予其它角色,以控制哪 ...

  8. VMware 虚拟机NAT模式如何设置网络连接,从头到尾全过程~!!

    一.首先查看自己的虚拟机服务有没有开启,选择电脑里面的服务查看: 1.计算机点击右键选择管理  2.进入管理选择VM开头的服务如果没有开启的话就右键开启  二.虚拟机服务开启后就查看本地网络虚拟机的网 ...

  9. The document cannot be opened. It has been renamed, deleted or moved.

    In the Individual components section of the Visual Studio Installer, make sure that Razor Language S ...

  10. shell awk匹配字符串(从配置文件)

    配置文件 config.properties xxx_yyy_lib_path="路径" xxx_yyy_bin_path="路径" 想通过shell来读入路径 ...