Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉。贝西需要她的美梦,所以她想尽快回来。

农场主约翰的田里有n(2<=n<=1000)个地标,唯一编号为1..n。地标1是谷仓;贝西整天站在其中的苹果树林是地标n。奶牛在田里行走时使用地标间不同长度的T(1<=t<=2000)双向牛道。贝西对自己的导航能力没有信心,所以一旦开始,她总是沿着一条从开始到结束的路线行进。

根据地标之间的轨迹,确定贝西返回谷仓必须走的最小距离。这样的路线一定存在。

解题思路

这个题是很典型的最短路问题,并且给了起点和终点,所以使用Dijkstra算法来解决单源最短路问题。

Dijkstra算法我这有两种形式,一种是普通的邻接矩阵法,复杂度是\(O(n^2)\),n是顶点的个数

然而使用邻接表和优先队列的形式,可以将复杂度优化到\(O(m*logn)\),m是边的个数,但是这种一般适用于稀疏图,对于稠密图,这种优化算法可能比原来没有优化的复杂度还要高。参考《算法竞赛入门经典(第二版)》360页

这个题也可以用Bellman算法来进行实现。

代码实现

//普通的临界矩阵算法 dijkstra算法
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int inf=0x3f3f3f3f;
const int maxn=1e3+7;
int mp[maxn][maxn];
int dis[maxn];
int vis[maxn];
int t, n; void dij()
{
for(int i=1; i<=n; i++)
{
dis[i]=mp[1][i];
}
vis[1]=1;
for(int i=1; i<n; i++)
{
int tmp=inf, k;
for(int j=1; j<=n; j++)
{
if(!vis[j] && dis[j]<tmp)
{
tmp=dis[j];
k=j;
}
}
vis[k]=1;
for(int j=1; j<=n; j++)
{
if(!vis[j] && dis[j] > dis[k]+mp[k][j])
dis[j]=dis[k] + mp[k][j];
}
}
} void init()
{
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(i!=j) mp[i][j]=inf;
else mp[i][j]=0;
}
}
fill(vis+1, vis+n+1, 0);
fill(dis+1, dis+n+1, inf);
}
int main()
{
while(scanf("%d%d", &t, &n)!=EOF)
{
int a, b, c;
init();
for(int i=1; i<=t; i++)
{
scanf("%d%d%d", &a, &b, &c);
if(c < mp[a][b])
{
mp[a][b]=c;
mp[b][a]=c;
}
}
dij();
printf("%d\n", dis[n]);
}
return 0;
}

优化的Dijkstra算法

#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=1e3+7;
const int maxe=2e3+7;
const int inf=0x3f3f3f3f;
struct edge{
int to, cost;
};
struct headnode{
int d, u;
bool friend operator < (const headnode a, const headnode b)
{
return a.d > b.d; //使用大于号是因为在优先队列中默认是从大到小的,这里需要反过来,从小到大。
}
};
int dis[maxn];
int vis[maxn];
vector<edge> g[maxn];
priority_queue<headnode> que;
int t, n;
void init()
{
for(int i=1; i<=n; i++)
{
g[i].clear();
vis[i]=0;
dis[i]=inf;
}
while(!que.empty()) que.pop();
}
void dij(int s)
{
int u;
edge e;
dis[s]=0;
headnode tmp={0, s};
headnode next;
que.push(tmp);
while(!que.empty())
{
tmp=que.top();
que.pop();
u=tmp.u;
if(vis[u]==1) continue;
vis[u]=1;
for(int i=0; i<g[u].size(); i++)
{
e=g[u][i];
if(dis[e.to] > dis[u]+e.cost)
{
dis[e.to]=dis[u]+e.cost;
next.d=dis[e.to];
next.u=e.to;
que.push(next);
}
}
}
}
int main()
{
while(scanf("%d%d", &t, &n)!=EOF)
{
init();
int a, b, c;
edge e;
for(int i=1; i<=t; i++)
{
scanf("%d%d%d", &a, &b, &c);
e.to=b;
e.cost=c;
g[a].push_back(e);
e.to=a;
e.cost=c;
g[b].push_back(e);
}
dij(1);
printf("%d\n", dis[n]);
}
return 0;
}

Bellman算法

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn=1e3+7;
const int maxe=4e3+7; //这里一定要注意,t是路的条数,但是存图时每条路需要存储两遍。
const int inf=0x3f3f3f3f; struct edge{
int a, b, c;
}e[maxe]; int dis[maxn];
int t, n, cnt; // bool bellman(int s)
{
for(int i=1 ;i<=n; i++)
dis[i]=inf;
dis[s]=0;
bool flag;
int x, y, z;
for(int i=1; i<n; i++)
{
flag=false;
for(int j=1; j<cnt; j++)//cnt-1是边的条数
{
x=e[j].a;
y=e[j].b;
z=e[j].c;
if(dis[y] >= dis[x] + z)
{
dis[y]=dis[x]+z;
flag=true;
}
}
if(!flag)
break;
if(flag && i==n)
return false;
}
return true;
} int main()
{
while(scanf("%d%d", &t, &n)!=EOF)
{
int a, b, c;
cnt=1;
for(int i=1; i<=t; i++)
{
scanf("%d%d%d", &a, &b, &c);
e[cnt].a=a; e[cnt].b=b; e[cnt++].c=c;
e[cnt].a=b; e[cnt].b=a; e[cnt++].c=c;
}
bellman(1);
printf("%d\n", dis[n]);
}
return 0;
}

优化的Bellman算法,也就是鼎鼎大名的SPFA。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn=1e3+7;
const int inf=0x3f3f3f3f;
struct edge
{
int to, cost;
edge(){}
edge(int a, int b)
{
to=a;
cost=b;
}
};
int dis[maxn];
bool inq[maxn];
int cnt[maxn];
vector<edge> g[maxn];
queue<int>que;
int t, n;
bool spfa(int s)
{
for(int i=1; i<=n; i++)
{
dis[i]=inf;
inq[i]=false;
cnt[maxn]=0;
}
while(!que.empty()) que.pop(); edge e;
dis[s]=0;
inq[s]=true;
que.push(s);
while(!que.empty())
{
int u=que.front();
que.pop();
inq[u]=false;
for(int i=0; i<g[u].size() ; i++)
{
e=g[u][i];
if(dis[e.to] > dis[u]+e.cost)
{
dis[e.to] = dis[u]+e.cost;
if(inq[e.to]==false)
{
inq[e.to]=true;
que.push(e.to);
cnt[e.to]++;
if(cnt[e.to]>=n) return false; //这里是记录松弛的次数,如果达到n次说明有负环
}
}
}
}
return true;
}
int main()
{
while(scanf("%d%d", &t, &n)!=EOF)
{
int a, b, c;
for(int i=1; i<=n; i++)
g[i].clear();
for(int i=1; i<=t; i++)
{
scanf("%d%d%d", &a, &b, &c);
g[a].push_back(edge(b, c));
g[b].push_back(edge(a, c));
}
spfa(1);
printf("%d\n", dis[n]);
}
return 0;
}

Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. 【POJ - 2387】Til the Cows Come Home(最短路径 Dijkstra算法)

    Til the Cows Come Home 大奶牛很热爱加班,他和朋友在凌晨一点吃完海底捞后又一个人回公司加班,为了多加班他希望可以找最短的距离回到公司.深圳市里有N个(2 <= N < ...

  3. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  4. POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)

    题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  5. Til the Cows Come Home(最短路模板题)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Description Bessie is ...

  6. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  7. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  8. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  9. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

随机推荐

  1. php重写与重载

    转载:https://blog.csdn.net/binghui1990/article/details/9105237 重写/覆盖 override   指:子类重写了父类的同名方法 (注:1.重写 ...

  2. (转)window.open和window.showModalDialog的区别

    window.open和window.showModalDialog区别: 1.都是在IE上打开新窗口,只不过前者是非阻塞式,也可以说非模态窗口.而后者是阻塞式模态窗口.阻塞或者模态窗口,只有你把当前 ...

  3. Confluence 6 插入一个文件到你的页面

    文件可以在页面中以缩略图或者链接的方式显示.我们有多种办法能够上传文件,请参考 Upload Files 页面. 你可以控制文件如何在你的页面中显示.文件在页面中显示的可用方法与你的文件类型有关. 插 ...

  4. CF 672C 两个人捡瓶子 最短路与次短路思想

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  5. Unity3D_(API)场景切换SceneManager

    Unity场景切换SceneManager 官方文档:传送门 静态方法 创建场景 CreateScene Create an empty new Scene at runtime with the g ...

  6. Java多线程核心知识

    多线程相对于其他 Java 知识点来讲,有一定的学习门槛,并且了解起来比较费劲.在平时工作中如若使用不当会出现数据错乱.执行效率低(还不如单线程去运行)或者死锁程序挂掉等等问题,所以掌握了解多线程至关 ...

  7. MySQL定时任务实现方法

    类型一:每隔一分钟插入一条数据:   参数说明: DEFINER:创建者: ON COMPLETION [NOT] PRESERVE :表示当事件不会再发生的情况下,删除事件(注意特定时间执行的事件, ...

  8. snmpEngineBoots & snmpEngineID数据存储到非易失性存储设备

    #include <stdio.h> #include <stdlib.h> #include <string.h> int regenerateID() { ; ...

  9. windows spark1.6

    jdk1.7 scala 2.10.5 spark 1.6.1 http://spark.apache.org/downloads.html hadoop 2.6.4 只需要留bin https:// ...

  10. kkfileview v2.0 发布,文件在线预览项目方案

    kkfileview文件在线预览 此项目为文件文档在线预览项目解决方案,项目使用流行的spring boot搭建,易上手和部署,部署好后可以独立提供预览服务,使用http接口访问,不需要和应用集成,具 ...