Jimmy’s travel plan

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 341    Accepted Submission(s): 58

Problem Description
Jimmy
lives in a huge kingdom which contains lots of beautiful cities. He
also loves traveling very much, and even would like to visit each city
in the country. Jaddy, his secretary, is now helping him to plan the
routes, however, Jaddy suddenly find that is quite a tough task because
it is possible for Jimmy to ask route’s information toward any city.
What was worth? Jaddy has to response for queries about the distance
information nearly between any pair of cities due to the undeterminable
starting city which Jimmy is living in when he raises a query. Because
of the large scale of the whole country, Jaddy feel hopeless to archive
such an impossible job, however, in order to gratify his manager, Jaddy
is now looking forward to your assistance.
There might be good news
about Jaddy’s work: since Jimmy is very lazy and would not like to
travel to a destination whose distance between the original city is
larger than TWO. That means only one intermediate city among the route
is acceptable (Apparently, all the connecting paths between any two
cities, if exists, have the same length as ONE). But don’t be fooled:
Jimmy also needs to know that how many alternative different routes are
available so that he can have more options. In particular two routes
were named as different if and only if there is at least one path in the
two routes is distinguishable, moreover, if more than one paths exist
between a particular pair of cities, they are considered as distinct.
 
Input
Input
has multiple test cases. The first line of the input has a single
integer T indication the number of test cases, then each test case
following. For each test case, the first line contains two integers N
and M indication the number of cities and paths in the country. Then M
lines are following, each line contains a pair of integers A and B,
separated by space, denoting an undirected path between city A and city
B, all the cities are numbered from 1 to N. Then a new line contains a
single integer Q, which means there are Q queries following. Each query
contains a couple of integers A and B which means querying the distance
and number of shortest routes between city A and B, each query occupy a
single line separately.
All the test cases are separated by a single blank line.
You can assume that N, Q <= 100000, M <= 200000.
 
Output
For
each test case, firstly output a single line contains the case number,
then Q lines for the response to queries with the same order in the
input. For each query, if there exists at least one routes with length
no longer than TWO, then output two integer separated by a single space,
the former is the distance (shortest) of routes and the later means how
many different shortest routes Jimmy can choose; otherwise, output a
single line contains “The pair of cities are not connected or too far
away.” (quotes for clarifying). See the sample data carefully for
further details.
 
Sample Input
2
5 7
1 2
2 3
3 4
4 5
2 5
2 4
1 2
4
1 4
1 2
5 3
5 4

 
2 0
2
1 1
1 2
 
Sample Output
Case #1:
2 2
1 2
2 2
1 1
Case #2:
0 1
The pair of cities are not connected or too far away.
 
给出一个无向图,问 u -> v  距离不超过2的 路径数量有多少 。
去重边,记录每个点度。
若询问中u 可直接达到v的话 直接二分出那条边。( log M )
否则要通过一个中间点 mid , 那么就选择点度比较小的点作为 u 暴力枚举mid。 然后二分 mid -> v 。
然后可以把这个询问hash起来, 当有相同的询问直接从 hashmap 拿出来 。
 
对于第2种情况的复杂度来说, 假设 u , v 的点度都达到 M / 2  。 这个询问的复杂度就 M/2*log(M) , 除外其他询问都是 Log(M)
假设点度都分得很均匀 。 都是 sqrt(M) , 那么这个询问 复杂度就是 sqrt(M) * log(M) 了
 
总的来说 复杂度就是 Q*sqrt(M)*log(M) .
 
 
#include<bits/stdc++.h>
using namespace std ;
const int N = ;
const int M = ;
const long long K = ;
int n , m ;
struct node {
int u , v ;
long long cnt ;
bool operator < ( const node &a ) const {
if( u != a.u ) return u < a.u ;
else return v < a.v ;
}
} e[M] ;
int tot ;
int in[N] ;
const int HASH = ;
struct HASHMAP {
long long key[N] , f[N] ;
int head[HASH] , next[N] , size ;
void init() {
memset( head , - , sizeof head ) ;
size = ;
}
void insert( int u , int v , long long ans ) {
long long KEY = K * u + v ;
int c = KEY % HASH ;
f[size] = ans ;
key[size] = KEY ;
next[size] = head[c] ;
head[c] = size++;
}
long long find( int u , int v ) {
long long KEY = K * u + v ;
int c = KEY % HASH ;
for( int i = head[c] ; ~i ; i = next[i] ) {
if( key[i] == KEY ) return f[i] ;
}
return - ;
}
} mp ; long long find( int u , int v ) {
int l = , r = m - ;
// cout << "l :" << l << " r : " << r << endl ;
if( l > r ) return - ;
if( u > e[r].u || ( u == e[r].u && v > e[r].v ) ) return - ;
if( v < e[l].v || ( v == e[l].v && u < e[l].u ) ) return - ;
while( l <= r ) {
int mid = (l+r)>>;
if( u < e[mid].u ) {
r = mid - ;
}
else if( u == e[mid].u ) {
if( v < e[mid].v ) r = mid - ;
else if( v > e[mid].v ) l = mid + ;
else return e[mid].cnt ;
}
else {
l = mid + ;
}
}
return - ;
}
vector< pair<int,long long> >g[N]; void Work() {
mp.init();
int q ; cin >> q ;
while( q-- ) {
int u , v ; cin >> u >> v ;
u-- , v-- ;
if( u > v ) swap( u , v ) ;
else if( u == v ) { cout << "0 1"<< endl ; continue ; }
long long ans = find( u , v ) ;
if( ans != - ) {
cout << "1 " << ans << endl ;
} else {
ans = mp.find( u , v ) ;
if( ans == - ) {
ans = ;
if( in[u] > in[v] ) swap( u , v ) ;
for( int i = ; i < g[u].size() ; ++i ) {
int mid = g[u][i].first ;
long long cnt1 = g[u][i].second , cnt2 = find( min(mid,v) , max(mid,v) );
if( cnt2 != - ) ans += cnt1 * cnt2 ;
}
if( u > v ) swap( u , v ) ;
mp.insert( u , v , ans ) ;
}
if( ans ) cout << "2 " << ans << endl ;
else cout << "The pair of cities are not connected or too far away." << endl ;
}
}
} void Gao() {
memset( in , , sizeof in );
for( int i = ; i < n ; ++i ) g[i].clear();
cin >> n >> m ;
if( !m ) return ;
for( int i = ; i < m ; ++i ) {
int x , y ; cin >> x >> y ;
x-- , y-- ;
if( x > y ) swap( x , y ) ;
e[i].u = x , e[i].v = y , e[i].cnt = ;
in[x]++ , in[y]++ ;
}
sort( e , e + m ) ;
tot = ;
for( int i = ; i < m ; ++i ) {
if( e[tot-].u == e[i].u && e[tot-].v == e[i].v ) {
e[tot-].cnt++ ;
} else {
e[tot++] = e[i] ;
}
}
m = tot ;
for( int i = ; i < m ; ++i ) {
g[e[i].u].push_back( make_pair( e[i].v,e[i].cnt) ) ;
g[e[i].v].push_back( make_pair( e[i].u,e[i].cnt) ) ;
}
} int Run() {
int _ , cas = ; cin >> _ ;
while( _-- ) {
cout << "Case #" << cas++ << ":" << endl ;
Gao(); Work();
}
return ;
}
int main() {
ios::sync_with_stdio();
return Run();
}
 

HDU 4014 Jimmy’s travel plan(图计数)的更多相关文章

  1. hdu 4885 TIANKENG’s travel(bfs)

    题目链接:hdu 4885 TIANKENG's travel 题目大意:给定N,L,表示有N个加油站,每次加满油能够移动距离L,必须走直线,可是能够为斜线.然后给出sx,sy,ex,ey,以及N个加 ...

  2. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  3. PAT1030 Travel Plan (30)---DFS

    (一)题意 题目链接:https://www.patest.cn/contests/pat-a-practise/1030 1030. Travel Plan (30) A traveler's ma ...

  4. 有标号的DAG图计数1~4

    前言 我什么都不会,菜的被关了起来. 有标号的DAG图I Solution 考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推? 设\(f_i\)表示i个点的答案,我们考虑 ...

  5. PAT 1030 Travel Plan[图论][难]

    1030 Travel Plan (30)(30 分) A traveler's map gives the distances between cities along the highways, ...

  6. 1030 Travel Plan (30 分)

    1030 Travel Plan (30 分) A traveler's map gives the distances between cities along the highways, toge ...

  7. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  8. PAT_A1030#Travel Plan

    Source: PAT A1030 Travel Plan (30 分) Description: A traveler's map gives the distances between citie ...

  9. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

随机推荐

  1. Linux下升级安装Python-3.6.9版本

    1.操作系统信息  (1)cat /etc/redhat-releas (2)Red Hat Enterprise Linux Server release 6.0 (Santiago) 2.安装开发 ...

  2. websocket的通信原理

    首先什么是websocket? 1.websocket和http一样是一种通信协议,是HTML5的一种新的协议. 2.既然有了http协议了,为什么还会有websocket呢?是因为是为了弥补http ...

  3. 039:模版结构优化之include标签详解

    引入模版: 有时候一些代码是在许多模版中都用到的.如果我们每次都重复的去拷贝代码那肯定不符合项目的规范.一般我们可以把这些重复性的代码抽取出来,就类似于Python中的函数一样,以后想要使用这些代码的 ...

  4. 消息中间件之 RabbitMQ

    文章内容来源 https://www.cnblogs.com/jun-ma/p/4840869.html 延伸阅读文章 https://blog.csdn.net/growing_duck/artic ...

  5. 在volist中用遍历

    $('.InColor').each(function(){ if($(this).val()==1){ $('.absolute').css({"color":"gra ...

  6. C++STL手写版

    手写STL,卡常专用. node为变量类型,可以自由定义,以下不再赘述. 1.stack(栈) 开一个数组,和一个top指针,压栈时++,弹栈时--即可. struct stack{ int tp;n ...

  7. window cmd 命令行下创建文件夹和文件

    新建文件夹命令: makedir 文件名 新建文件命令: type null> 文件名.文件类型 链接

  8. AT2371 Placing Squares

    题解 考虑\(dp\) \[ dp[i]=\sum_{i=0}^{i-1}dp[j]*(i-j)^2 \] 我们可以设\((i-j)\)为\(x\),那么随着\(i\)向右移动一格,每个\(x\)都是 ...

  9. VMware 15 搭建MacOS 10.14教程

    写于2018.12.23 教程原文链接:https://pan.baidu.com/s/1wvNYg_MQH_lwewKbpCQ5_Q ———————————————————————————————— ...

  10. C# Oledb 连接Access数据库字符串

    string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" + dbFile + ";Persist ...