来源:https://github.com/zhangqianhui/AdversarialNetsPapers

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it)

Unclassified

✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)

✅ [Adversarial Autoencoders] [Paper][Code]

✅ [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]

✅ [Generating images with recurrent adversarial networks] [Paper][Code]

✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

✅ [Learning What and Where to Draw] [Paper][Code]

✅ [Adversarial Training for Sketch Retrieval] [Paper]

✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)

✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

✅ [Adversarial Feature Learning] [Paper]

Ensemble

✅ [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)

Clustering

✅ [Unsupervised Learning Using Generative Adversarial Training And Clustering] [Paper][Code](ICLR) ✅ [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)

Image Inpainting

✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]

✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

✅ [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]

✅ [Generative face completion] [Paper][code](CVPR2017)

✅ [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)

Joint Probability

✅ [Adversarially Learned Inference][Paper][Code]

Super-Resolution

✅ [Image super-resolution through deep learning ][Code](Just for face dataset)

✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

✅ [EnhanceGAN] [Docs][[Code]]

Disocclusion

✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)

Object Detection

✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)

✅ [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)

RNN

✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

✅ [Conditional Generative Adversarial Nets] [Paper][Code]

✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]

✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

✅ [Pixel-Level Domain Transfer] [Paper][Code]

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)

✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow's paper)

✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis & style transfer

✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

Image translation

✅ [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]

✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

✅ [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]

✅ [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]

✅ [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]

✅ [Unsupervised Image-to-Image Translation Networks] [Paper]

GAN Theory

✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)

✅ [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

✅ [Sampling Generative Networks] [Paper][Code]

✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio's paper)

✅ [How to train Gans] [Docu]

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

✅ [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

✅ [Least Squares Generative Adversarial Networks] [Paper][Code]

✅ [Wasserstein GAN] [Paper][Code]

✅ [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

3D

✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

MUSIC

✅ [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]

Face Generative and Editing

✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Learning Residual Images for Face Attribute Manipulation] [Paper]

✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)

For discrete distributions

✅ [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]

✅ [Boundary-Seeking Generative Adversarial Networks] [Paper]

✅ [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]

Adversarial Examples

✅ [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]

Project

✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

Author Address
inFERENCe Adversarial network
inFERENCe InfoGan
distill Deconvolution and Image Generation
yingzhenli Gan theory
OpenAI Generative model

Other

✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

✅ [2] [PDF](NIPS Lecun Slides)

生成对抗网络资源 Adversarial Nets Papers的更多相关文章

  1. 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]

    一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...

  2. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  3. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. 生成对抗网络 Generative Adversarial Networks

    转自:https://zhuanlan.zhihu.com/p/26499443 生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在2014年提出的机器学习架构. 要全面理 ...

  6. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  7. Generative Adversarial Nets[CycleGAN]

    本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

随机推荐

  1. JDK源码--HashMap(之resize)

    1.HashMap源码阅读目标了解具体的数据结构(hash及冲突链表.红黑树)和重要方法的具体实现(hashCode.equals.put.resize...) 2.重要方法 hashCode 与 e ...

  2. SQL Server CDC最佳实践

    企业核心业务系统oltp的数据需要通过ETL同步到数据仓库,原始的ETL流程通过定制化从SQL Server中进行数据抽取,经过生产环境的监控,发现ETL过程的query会对生产系统造成额外负载.于是 ...

  3. 彩色点云生成mesh的纹理

    上一篇文章 https://www.cnblogs.com/lovebay/p/11423576.html ,我们使用MPA算法实现了 点云生成mesh,但仅仅实现mesh的顶点着色,为了让mesh有 ...

  4. Python学习之==>有依赖关系的接口开发

    一.接口需求 1.登录接口 (1)登录成功后将session信息存入redis数据库并设置失效时间为600秒 (2)构造返回结果的对象flask.make_response() (3)产生cookie ...

  5. Elasticsearch 安装head插件

    一.简介 elasticsearch-head是一个界面化的集群操作和管理工具,可以对集群进行傻瓜式操作.你可以通过插件把它集成到es(首选方式),也可以安装成一个独立webapp. Elastics ...

  6. golang 标准库 sync.Map 中 nil 和 expunge 区别

    本文不是 sync.Map 源码详细解读,而是聚焦 entry 的不同状态,特别是 nil 状态和 expunge 状态的区分. entry 是 sync.Map 存放值的结构体,其值有三种,分别为 ...

  7. Golang http post error : http: ContentLength=355 with Body length 0

    参考:https://stackoverflow.com/questions/31337891/net-http-http-contentlength-222-with-body-length-0 问 ...

  8. 安装golang web框架 gin

    gin 地址https://github.com/gin-gonic/gin#installation 去gin 地址 clone 下来,放到对应的包中即可.如:gin就放在项目文件夹/github. ...

  9. 虚拟化 RemoteApp 远程接入 源码 免费

    远程接入 RemoteApp 虚拟化 源码 免费 1.终端安装与配置: 此远程接入组件的运行原理与瑞友天翼.异速连.CTBS等市面上常见的远程接入产品一样,是透过Windows的终端服务来实现的,速度 ...

  10. linux 运行时加载不上动态库 解决方法(转)

    1. 连接和运行时库文件搜索路径到设置     库文件在连接(静态库和共享库)和运行(仅限于使用共享库的程序)时被使用,其搜索路径是在系统中进行设置的.一般 Linux 系统把 /lib 和 /usr ...