/**
HDU 3530 单调队列的应用
题意:
给定一段序列,求出最长的一段子序列使得该子序列中最大最小只差x满足m<=x<=k。
解题思路:
建立两个单调队列分别递增和递减维护(头尾删除,只有尾可插入)
Max - Min 为两个队列的队首之差while(Max-Min>K) 看哪个的队首元素比较前就移动谁的
最后求长度时,需要先记录上一次的被淘汰的最值位置last ,这样[last+1,i]即为满足条件的连续子序列了
i - last
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
const int N=;
int q_max[N],q_min[N];//递增,递减
int a[N],n,m,k;
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int head_min=,head_max=,tail_min=,tail_max=;
int left1=,left2=;
int maxx=;
for(int i=;i<=n;i++)
{
while(head_min<tail_min&&a[q_min[tail_min-]]<=a[i])
tail_min--;
while(head_max<tail_max&&a[q_max[tail_max-]]>=a[i])
tail_max--;
q_max[tail_max++]=q_min[tail_min++]=i;
/* printf("***%d 递减、递增***\n",i);
for(int j=head_min;j<tail_min;j++)
printf("%d ",a[q_min[j]]);
printf("\n");
for(int j=head_max;j<tail_max;j++)
printf("%d ",a[q_max[j]]);
printf("\n");*/
while(a[q_min[head_min]]-a[q_max[head_max]]>k)
{
if(q_min[head_min]<q_max[head_max])
left1=q_min[head_min++];
else
left2=q_max[head_max++];
}
if(a[q_min[head_min]]-a[q_max[head_max]]>=m)
maxx=max(maxx,i-max(left1,left2));
}
printf("%d\n",maxx);
}
return ;
}
/*
5 2 3
1 -1 2 -6 5
5 1 3
1 2 3 4 5
6 0 0
-1 0 2 1 125 -5
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+;
int a[maxn], q1[maxn], q2[maxn];
int main()
{
int n, m, k;
while(cin>>n>>m>>k) {
for(int i = ; i<n; i++) {
scanf("%d", &a[i]);
}
int st1 = , st2 = , ed1 = , ed2 = , ans = , now = ;
for(int i = ; i<n; i++) {
while(st1<ed1&&a[q1[ed1-]]<a[i]) //q1维护一个单调递减的数列,这样队头元素是最大值, 第二个是第二大的值
ed1--;
while(st2<ed2&&a[q2[ed2-]]>a[i]) //q2维护一个单调递增的数列, 队头是最小值。
ed2--;
q1[ed1++] = q2[ed2++] = i;
while(st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>k) { //如果最大值-最小值大于k
if(q1[st1]<q2[st2]) {
now = q1[st1++]+; //如果最大值在序列中的位置小于最小值
} else {
now = q2[st2++]+;
}
}
if(st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>=m) {
ans = max(ans, i-now+); //只有最大值-最小值大于等于m的时候才更新ans
}
}
cout<<ans<<endl;
}
}

hdu 3530 单调队列最值的更多相关文章

  1. HDU 3530 单调队列

    题目大意:给你n个数, 让你问你最长的满足要求的区间有多长,区间要求:MAX - MIN >= m && MAX - MIN <= k 思路:单调队列维护递增和递减,在加入 ...

  2. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  3. hdu 3401 单调队列优化DP

    Trade Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  4. HDU 2191 - 单调队列优化多重背包

    题目: 传送门呀传送门~ Problem Description 急!灾区的食物依然短缺! 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种 ...

  5. hdu 3415(单调队列) Max Sum of Max-K-sub-sequence

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=3415 大意是给出一个有n个数字的环状序列,让你求一个和最大的连续子序列.这个连续子序列的长度小于等于k. ...

  6. HDU 4122 单调队列

    转载自:http://blog.csdn.net/lvshubao1314/article/details/46910271 DES :给出n个订单和m是商店的开放时间.然后n行给出n个订单的信息.然 ...

  7. hdu 3401 单调队列优化+dp

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others)    Memor ...

  8. hdu 3415 单调队列

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. hdu 5289(单调队列)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

随机推荐

  1. js2flowchart

    https://github.com/Bogdan-Lyashenko/js-code-to-svg-flowchart js2flowchart - a visualization library ...

  2. 接入集团auth流程

    前言 一直对集团的auth系统很感兴趣,所以这次记录下接入集团auth的流程.如果后期有时间,会补充具体的auth实现细节. 正文 一.实现思想 1. 实现思想 明确几个名词:接入方,管理方.接入方指 ...

  3. [论文笔记] Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment

    Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment 简介 本文提出了一种网络结 ...

  4. 分布式任务队列 Celery —— 详解工作流

    目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...

  5. shims-vue.d.ts 解析

    TypeScript的文档看起来比较让人匪夷所思 TS是从2012年就开始的项目,那时ES6的模块化还没有成为继定标准,所以今天来看TS中一些名词让人匪夷所思,其实都是历史遗留问题 比如namespa ...

  6. 阶段3 1.Mybatis_03.自定义Mybatis框架_4.自定义mybatis的编码-解析XML的工具类介绍

    导入xml操作的类和用到的相关包 创建util包,然后把提供好的XMLConfigBuilder.java文件复制3过来 复制过来,里面用到了很多dom4j的东西 打开pom.xml 输入depend ...

  7. 测开之路一百四十八:WTForms表单验证

    使用WTForms表单验证,可以在数据建模时就设置验证信息和错误提示 创建模型时,设置验证内容,如必填.格式.长度 from flask_wtf import Formfrom wtforms imp ...

  8. 系统分析与设计HW1

    软件工程的定义 1993年,电气电子工程师学会(IEEE)给出了一个定义:"将系统化的.规范的.可度量的方法用于软件的开发.运行和维护的过程,即将工程化应用于软件开发中". 阅读经 ...

  9. Java面试题集(131-135)

    Java程序员面试题集(131-135) 摘要:这部分内容准备重新发布为Java程序员面试题集(151-180),但这篇帖子仍然保留在这里.查看新内容请点击Java程序员面试题集(151-180) 1 ...

  10. 第九周课程总结&实验报告七

    实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. package ...