hdu 3530 单调队列最值
/**
HDU 3530 单调队列的应用
题意:
给定一段序列,求出最长的一段子序列使得该子序列中最大最小只差x满足m<=x<=k。
解题思路:
建立两个单调队列分别递增和递减维护(头尾删除,只有尾可插入)
Max - Min 为两个队列的队首之差while(Max-Min>K) 看哪个的队首元素比较前就移动谁的
最后求长度时,需要先记录上一次的被淘汰的最值位置last ,这样[last+1,i]即为满足条件的连续子序列了
i - last
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
const int N=;
int q_max[N],q_min[N];//递增,递减
int a[N],n,m,k;
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int head_min=,head_max=,tail_min=,tail_max=;
int left1=,left2=;
int maxx=;
for(int i=;i<=n;i++)
{
while(head_min<tail_min&&a[q_min[tail_min-]]<=a[i])
tail_min--;
while(head_max<tail_max&&a[q_max[tail_max-]]>=a[i])
tail_max--;
q_max[tail_max++]=q_min[tail_min++]=i;
/* printf("***%d 递减、递增***\n",i);
for(int j=head_min;j<tail_min;j++)
printf("%d ",a[q_min[j]]);
printf("\n");
for(int j=head_max;j<tail_max;j++)
printf("%d ",a[q_max[j]]);
printf("\n");*/
while(a[q_min[head_min]]-a[q_max[head_max]]>k)
{
if(q_min[head_min]<q_max[head_max])
left1=q_min[head_min++];
else
left2=q_max[head_max++];
}
if(a[q_min[head_min]]-a[q_max[head_max]]>=m)
maxx=max(maxx,i-max(left1,left2));
}
printf("%d\n",maxx);
}
return ;
}
/*
5 2 3
1 -1 2 -6 5
5 1 3
1 2 3 4 5
6 0 0
-1 0 2 1 125 -5
*/
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+;
int a[maxn], q1[maxn], q2[maxn];
int main()
{
int n, m, k;
while(cin>>n>>m>>k) {
for(int i = ; i<n; i++) {
scanf("%d", &a[i]);
}
int st1 = , st2 = , ed1 = , ed2 = , ans = , now = ;
for(int i = ; i<n; i++) {
while(st1<ed1&&a[q1[ed1-]]<a[i]) //q1维护一个单调递减的数列,这样队头元素是最大值, 第二个是第二大的值
ed1--;
while(st2<ed2&&a[q2[ed2-]]>a[i]) //q2维护一个单调递增的数列, 队头是最小值。
ed2--;
q1[ed1++] = q2[ed2++] = i;
while(st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>k) { //如果最大值-最小值大于k
if(q1[st1]<q2[st2]) {
now = q1[st1++]+; //如果最大值在序列中的位置小于最小值
} else {
now = q2[st2++]+;
}
}
if(st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>=m) {
ans = max(ans, i-now+); //只有最大值-最小值大于等于m的时候才更新ans
}
}
cout<<ans<<endl;
}
}
hdu 3530 单调队列最值的更多相关文章
- HDU 3530 单调队列
题目大意:给你n个数, 让你问你最长的满足要求的区间有多长,区间要求:MAX - MIN >= m && MAX - MIN <= k 思路:单调队列维护递增和递减,在加入 ...
- HDU 3507 单调队列 斜率优化
斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...
- hdu 3401 单调队列优化DP
Trade Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- HDU 2191 - 单调队列优化多重背包
题目: 传送门呀传送门~ Problem Description 急!灾区的食物依然短缺! 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种 ...
- hdu 3415(单调队列) Max Sum of Max-K-sub-sequence
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=3415 大意是给出一个有n个数字的环状序列,让你求一个和最大的连续子序列.这个连续子序列的长度小于等于k. ...
- HDU 4122 单调队列
转载自:http://blog.csdn.net/lvshubao1314/article/details/46910271 DES :给出n个订单和m是商店的开放时间.然后n行给出n个订单的信息.然 ...
- hdu 3401 单调队列优化+dp
http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others) Memor ...
- hdu 3415 单调队列
Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- hdu 5289(单调队列)
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
随机推荐
- js2flowchart
https://github.com/Bogdan-Lyashenko/js-code-to-svg-flowchart js2flowchart - a visualization library ...
- 接入集团auth流程
前言 一直对集团的auth系统很感兴趣,所以这次记录下接入集团auth的流程.如果后期有时间,会补充具体的auth实现细节. 正文 一.实现思想 1. 实现思想 明确几个名词:接入方,管理方.接入方指 ...
- [论文笔记] Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment
Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment 简介 本文提出了一种网络结 ...
- 分布式任务队列 Celery —— 详解工作流
目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...
- shims-vue.d.ts 解析
TypeScript的文档看起来比较让人匪夷所思 TS是从2012年就开始的项目,那时ES6的模块化还没有成为继定标准,所以今天来看TS中一些名词让人匪夷所思,其实都是历史遗留问题 比如namespa ...
- 阶段3 1.Mybatis_03.自定义Mybatis框架_4.自定义mybatis的编码-解析XML的工具类介绍
导入xml操作的类和用到的相关包 创建util包,然后把提供好的XMLConfigBuilder.java文件复制3过来 复制过来,里面用到了很多dom4j的东西 打开pom.xml 输入depend ...
- 测开之路一百四十八:WTForms表单验证
使用WTForms表单验证,可以在数据建模时就设置验证信息和错误提示 创建模型时,设置验证内容,如必填.格式.长度 from flask_wtf import Formfrom wtforms imp ...
- 系统分析与设计HW1
软件工程的定义 1993年,电气电子工程师学会(IEEE)给出了一个定义:"将系统化的.规范的.可度量的方法用于软件的开发.运行和维护的过程,即将工程化应用于软件开发中". 阅读经 ...
- Java面试题集(131-135)
Java程序员面试题集(131-135) 摘要:这部分内容准备重新发布为Java程序员面试题集(151-180),但这篇帖子仍然保留在这里.查看新内容请点击Java程序员面试题集(151-180) 1 ...
- 第九周课程总结&实验报告七
实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. package ...