洛谷P2822

数学真重要啊……

其实解这一题的关键就是组合恒等式:C(n,m)=C(n-1,m)+C(n-1,m-1),然后再知道组合数的矩阵(杨辉三角)和题中n,m的关系就很容易解决了(然而做这题之前我并不知道组合恒等式于是杯具了)

由上文提到的几何恒等式,我们可以将组合数打成如下矩阵(C(i,j)行数代表i,列数代表j(均从0开始))

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

………………

接下来我们来看要求的结论:求所有的0≤i≤n,0≤j≤min(i,m)中有多少对(i,j)使C(i,j)是k的倍数。

我乍一看到min(i,m)以为这题很复杂。但放到图中一看,想到i≥j,我们惊奇地发现,我们要求的结论就是图中共n+1行,m+1列(包括i=0,j=0)中有多少组合数是k的倍数。

画个图给大家感受一下(灵魂画手)

比如n=3,m=2,那我们就是要求图中这个部分组合数是k的倍数的数量

但询问量特别大,所以我们可以预处理一下

每访问到一个元素都枚举一个矩形很慢,但我们有递推式:d[i][j]=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+!(zuhe[i][j]%k)

拿上面那个矩阵举例子

黑色部分的信息(被k整除的组合数个数)d[3][2]可以表示为红色部分的信息d[2][2]加上绿色部分的信息d[3][1]减去蓝色部分的信息d[2][1](此信息满足区间加法和减法性质)

事实上因为c++数组自动初始化为0的问题,所以我们只会初始化有组合数部分的d值(即i≥j),那么m<n的时候怎么办呢?

很显然图中黑色部分的信息等于红色部分的信息(因为组合数数量相等)

所以当m<n时d[m][n]=d[m][m](在递推的时候处理或是在输出的时候处理均可,我是在输出的时候处理的)

另外此处递推的时候注意一下边界问题(i=j时),此时d[i-1][j]我们没有更新(因为i-1<j),所以此时的d[i][j]=d[i][j-1]+!(zuhe[i][j]%k)

即黑色部分的信息等于红色部分的信息加上当前点的信息

还有一点小tip就是2000个组合数会很大,所以我们递推组合数的时候就将它模k,这样模k=0的组合数在表中的值就是0,上面的递推公式就改为:d[i][j]=d[i-1][j]+d[i][j-1]-d[i-1][j-1]+!zuhe[i][j](i>j),d[i][i]=d[i][i-1]+!zuhe[i][i]

剩下的就很简单了,记得初始化zuhe[1][0]=zuhe[1][1]=1即可

代码如下:

 #include<cstdio>
using namespace std;
int t,k,n,m;
int zuhe[][];//存储组合数(%k意义下)
int d[][];//存储方案个数
int main()
{
scanf("%d%d",&t,&k);
zuhe[][]=zuhe[][]=;//初始化C(1,0)=C(1,1)=1
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
zuhe[i][j]=(zuhe[i-][j]+zuhe[i-][j-])%k;
for(int i=;i<=;i++)
{
for(int j=;j<i;j++)
d[i][j]=d[i-][j]+d[i][j-]-d[i-][j-]+!zuhe[i][j];
d[i][i]=d[i][i-]+!zuhe[i][i];
}
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
if(n<m)
m=n;
printf("%d\n",d[n][m]);
}
return ;
}

NOIP2016 D2T1 组合数问题的更多相关文章

  1. CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)

    CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子, ...

  2. 题解 【NOIP2016】组合数问题

    [NOIP2016]组合数问题 Description Input 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, ...

  3. UOJ263 【NOIP2016】组合数问题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. NOIP2016 D2T1 組合數問題(problem)

    题目描述 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们 ...

  5. 【NOIP2016】组合数问题 题解(组合数学+递推)

    题目链接 题目大意:给定$n,m,k$,求满足$k|C_i^j$的$C_i^j$的个数.$(0\leq i\leq n,1\leq j\leq \min(i,m))$. --------------- ...

  6. 【NOIP2016】组合数问题

    写着玩玩…… 反正超级sb题. #include<bits/stdc++.h> typedef long long ll; using namespace std; ll c[][],h[ ...

  7. 【NOIP2016】 组合数问题

    [题目链接] 点击打开链接 [算法] 杨辉三角 + 二维前缀和 O(1)计算答案 [代码] #include<bits/stdc++.h> using namespace std; #de ...

  8. $Noip2016/Luogu2822$ 组合数问题

    $Luogu$ 看这题题解的时候看到一个好可爱的表情(●'◡'●)ノ♥ $Sol$ 首先注意到这题的模数是$k$.然而$k$并不一定是质数,所以不能用$C_n^m=\frac{n!}{m!(n-m)! ...

  9. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

随机推荐

  1. Quartz最佳实践

    本文来自对http://www.quartz-scheduler.org/documentation/best-practices.html的翻译. 表示还没用过Quartz,正准备用的,然后在官网上 ...

  2. unity让碰撞只发生一次

    碰撞发生在帧的开始,所以你可以检测到冲突,并在LateUpdate复位: private bool hasCollided = false; void OnCollisionEnter(Collisi ...

  3. Nginx/Nginx配置文件

    nginx.conf配置文件 mac目录位置:/usr/local/etc/nginx/ ubuntu目录位置:/etc/nginx nginx.conf配置 /* 全局块:配置影响nginx全局的指 ...

  4. Linux-Spark-Hadoop-Hive安装配置

    1. JAVA安装配置:https://www.cnblogs.com/lamp01/p/8932740.html 2. Spark安装配置:https://www.cnblogs.com/vince ...

  5. r子集代码实现(递归)

    #!/usr/bin/env python #coding:utf-8 SET_START = 1 SET_END = 9 SUB_LEN = 10 def r_subset(i, r, pre, a ...

  6. POJ 3549 GSM phone(圆+扫描线+最短路)

    题目意思是求起点s到终点s的最短路,但是只能在圆的内部和边上走.一种可以想到的方法就是求出所有的交点,然后两两连边并验证合法性,但是这样的交点数规模有n2. 我们可以观察发现,我们在圆求并构成的图形中 ...

  7. Scrapy 教程(一)-安装与入门

    安装 具体请自行百度 依赖库 网上说pip安装会内分泌失调,我试了下还行吧,不过也遇到几个问题 解决方法 pip install -I cryptography 解决方法 pip install -U ...

  8. loli的测试-2018.12.9

    模拟赛-2018.12.9 这是NOIP之后第一次模拟赛...但是考的比较悲惨. 非常喜欢写考试总结,不知道为什么... T1:https://www.luogu.org/problemnew/sho ...

  9. linux:服务器代理squid安装配置

    国内上往外的网站太慢,配了个香港代理服务器.如下:当前环境: centos系统.香港服务器IP(假设:59.188.71.11)检查squid是否安装:[root@localhost ~]# rpm ...

  10. js中封装一个自己的简单数学对象

    封装一个数学对象求最大值最小值 <script> var myMath={ PI:3.1415926, max:function(){ var max=arguments[0];//注意a ...