# Pandas安装
- Anaconda 安装: conda install pandas 或者pip install pandas 参考 http://pandas.pydata.org/

## Series 示例
- 定义方式如下
>>>s1 = Series(['张三','男',25,'北京'])
>>>print(s1)
0 张三
1 男
2 25
3 北京
dtype: object

- 带索引定义
>>>s2 = Series(['张三','男',25,'北京'],index=['Name','Sex','Age','Addr'])
>>>s3 = Series(['张三','男',25,'北京'],['Name','Sex','Age','Addr'])
>>>print(s2)
Name 张三
Sex 男
Age 25
Addr 北京
dtype: object
>>>print(s3)
Name 张三
Sex 男
Age 25
Addr 北京
dtype: object

- 传入字典方式
>>>dic = {'Name':'张三','Sex':'男','Age':25,'Addr':'北京'}
>>> s4 = Series(dic)
>>>print(s4)
Name 张三
Sex 男
Age 25
Addr 北京
dtype: object

- 访问索引和值
>>>s4.index
Index(['Nmae', 'Sex', 'Age', 'Addr'], dtype='object')
>>>s4.values
array(['张三', '男', 25, '北京'], dtype=object)
>>>s4.index
Index(['Name', 'Sex', 'Age', 'Addr'], dtype='object')
>>> 
>>>s4.values
array(['张三', '男', 25, '北京'], dtype=object)

## DataFrame
- DataFrame 是一种二维的数据结构,非常接近于电子表格或者类似 mysql 数据库的形式。它的竖行称之为 columns,横行跟前面的 Series 一样,称之为 index,也就是说可以通过 columns 和 index 来确定一个主句的位置。
- 示例
>>>data = {'年级':['一年级','二年级','三年级'], '班数':[10, 8, 8 ], '主任':['张老师', '李老师', '王老师']}
>>>Df = DataFrame(data)
>>>print(Df)
年级 班数 主任
0 一年级 10 张老师
1 二年级 8 李老师
2 三年级 8 王老师

>>>Df2= DataFrame(data, index=['a', 'b', 'c'])
>>>print(Df2)
年级 班数 主任
a 一年级 10 张老师
b 二年级 8 李老师
c 三年级 8 王老师
>>> 
>>>Df['年级']
0 一年级
1 二年级
2 三年级
Name: 年级, dtype: object

>>>Df['班数'][0] = 9
>>>print(Df)
年级 班数 主任
0 一年级 9 张老师
1 二年级 10 李老师
2 三年级 10 王老师

>>>Df['班数'][1] = 11
>>>print(Df)
年级 班数 主任
0 一年级 9 张老师
1 二年级 11 李老师
2 三年级 10 王老师

>>>Df['班数'] = 11
>>>print(Df)
年级 班数 主任
0 一年级 11 张老师
1 二年级 11 李老师
2 三年级 11 王老师
>>>

Python练习:初别Pandas的更多相关文章

  1. python及numpy,pandas易混淆的点

    https://blog.csdn.net/happyhorizion/article/details/77894035 初接触python觉得及其友好(类似matlab),尤其是一些令人拍案叫绝不可 ...

  2. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  3. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  4. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  5. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  6. python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

  7. [转] python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

  8. Python数据分析入门之pandas基础总结

    Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.r ...

  9. 【转载】python安装numpy和pandas

    转载:原文地址 http://www.cnblogs.com/lxmhhy/p/6029465.html 最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装 ...

随机推荐

  1. Elasticsearch学习笔记二

    PS:上一篇已经介绍了ES的一些基础概念以及单机版ES的安装,配置,本文主要介绍ES的集群管理,CRUD以及简单聚合查询. 集群管理 ES的集群部署起来也很方便,将单机版SCP复制几分,修改elast ...

  2. (Android UI)Android应用程序中资源:图片、字符串、颜色、布局等

    Android系统设计采用代码和布局分离的设计模式,因此在设计Android应用程序时需要遵循该设计模式. “把非代码资源(如图片和字符串常量)和代码分离开来始终是一种很好的做法.”---<An ...

  3. 全是Bug

    一.开始实现程序之前 1. 在文章开头给出结对使用的Github项目地址和结对伙伴的作业地址.(两个人使用同一个) 我的结对伙伴是 : 201731044205. 伙伴的作业地址: https://w ...

  4. 小甲鱼Python第二十讲课后习题---021

    笔记: 1.lambda表达式的作用: 1)Python写一些执行脚本时,使用lambda就可以省下定义函数的过程,比如说我们只是需要写一个简单的脚本来管理服务器时间,我们就不需要专门定义一个函数然后 ...

  5. NOIP-玩具谜题

    题目描述 小南有一套可爱的玩具小人,它们各有不同的职业. 有一天,这些玩具小人把小南的眼镜藏了起来.小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外,如下图: 这时 `singer` 告 ...

  6. Java课程寒假之回答问题:如何将你的兴趣化为可以立足于社会的资本

    在学校的时候干过几次兼职,算是无聊时候的外快吧,有一次是去辅导机构,在考试期间监考学生,前后大概四个小时,最后拿了四十五并且管了一顿饭,不得不说,小学生是真的皮,考试的时候有的爱讲话,有的是写完之后开 ...

  7. 十四、JavaWeb监听器

    JavaWeb监听器 三大组件: l Servlet l Listener l Filter Listener:监听器 初次相见:AWT 二次相见:SAX 监听器: l 它是一个接口,内容由我们来实现 ...

  8. Python基础之语句2

    一.if条件语句 1.语法: 2.if语句的真值表达式和条件表达式: 例题1:真值表达式判断奇偶数 num = int(input('请输入一个整数:')) if num % 2 : print('该 ...

  9. 壁虎书1 The Machine Learning Landscape

    属性与特征: attribute: e.g., 'Mileage' feature: an attribute plus its value, e.g., 'Mileage = 15000' Note ...

  10. 一次php访问sql server 2008的API接口的采坑

    2018年6月21日17:17:09,注意:不是详细文档,新手可能会看不懂 windows下安装 项目是sql server 2008的k3,php连接数据库写的API,因为是买的时候是别人的程序,测 ...