原题地址https://vjudge.net/problem/ZOJ-3329

题目大意

  有三个骰子,分别有k1,k2,k3个面,初始分数是0。第i骰子上的分数从1道ki。当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,当分数>n的时候结束。求需要掷骰子的次数的期望。

(0<=n<= 500,1<K1,K2,K3<=6,1<=a<=K1,1<=b<=K2,1<=c<=K3)

思路

  如果设当前分数为 i ,且再有 dp[ i ] 次投掷可以达到分数 n

  设该次投出的点数为 k

  那么容易写出状态转移方程  dp[ i ] = ∑ ( dp[ i+k ] * p[ k ] )  +  dp[ 0 ] * p[ 0 ] + 1 

  因为从当前状态开始,再投一次( 这就是式子中 +1 的由来 ) 可能到达的分数有 k 种,概率分别为 p[ 1 ] 到 p[ k ] (当然, p[ 1 ] , p [ 2 ]已被初始化为 0 .

  除此之外 ,也可能投出 k1=a,k2=b,k3=c 的组合,因此要加上 dp[ 0 ] * p[ 0 ]  这一项 .

  至此,我们得到了转移方程

  但是,经过观察我们可以发现它实际上是不能用的

  大凡可以使用的方程,必定是从一个方向推向另一个方向,要么从小到大(正推) ,要么从大到小(逆推)

  但是这个方程中,右边的项同时包含了比 i 大的( dp[ i+k ] ) 和比 i 小的( dp[ 0 ] )

  这就使dp 陷入一个自身依赖自身的环中

  一般遇到这种情况,我们会采取高斯消元法解方程来解决

  但因为博主太菜了,还不会(会补的,会补的......)

  同时,这道题中阻碍我们进行 dp 的只有 dp[ 0 ] 这一项

  因此我们采取将 dp[ 0 ] 设为未知数的方法

  

  注意到,每个 dp[ i ] 都含有相同的元素 dp[ 0 ]

  则 dp[ i ] 是 dp [ 0 ] 的一个线性组合( 因为没有出现 dp[ 0 ] 的高次幂)

  因此可以将转移方程写成  dp[ i ] = dp[ 0 ] * a[ i ]+b[ i ]  ············( 1 )

  于是就有 dp[ i+k ] = dp[0] * a[ i+k ]+b[ i+k ]

  把这个式子带入原来的转移方程得到 dp[ i ]  = dp[ 0 ] * p[ 0 ] + ∑( dp[ i+k ] * p[ i+k ] )  +  1

  再将这个式子中的 dp[ 0 ] 分离出来,化成与式 ( 1 ) 相同的形式    dp[ i ]  = dp[ 0 ] * (     ∑ ( a[ i+k ] * p[ i+k ] ) + p[ 0 ]     )    +     (     ∑( b[ i+k ] * p[ i+k ] ) + 1    )

  我们把( 1 )式拉下来,让你看得更清楚:                                       dp[ i ]   = dp[0]              *                 a[ i ]                             +                          b[ i ]  

  因此,我们得到了新的,关于 a,b 的方程:

  

    a[ i ] = ∑ (   a[ i+k ] * p[ i+k ] ) + p[ 0 ]

               b[ i ] =∑ (  b[ i+k ] * p[ i+k ] ) + 1

  我们惊喜地发现,这是两个状态转移方程

  我们可以通过逆推得到 a[ 0 ]b[ 0 ]

  还记得式(1)吗?如果我们把它的 i 取成 0 ,就得到:

      dp[ 0 ] = dp[ 0 ] * a[ 0 ]+b[ 0 ]

  我们终于能够解出 dp[ 0 ]

  而这也正是本题的答案

下边附上kuagnbin 大大的代码:

·  

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std; double A[],B[];
double p[];
int main()
{
int T;
int k1,k2,k3,a,b,c;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double p0=1.0/k1/k2/k3;
memset(p,,sizeof(p));
for(int i=;i<=k1;i++)
for(int j=;j<=k2;j++)
for(int k=;k<=k3;k++)
if(i!=a||j!=b||k!=c)
p[i+j+k]+=p0;
memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=n;i>=;i--)
{
A[i]=p0;B[i]=;
for(int j=;j<=k1+k2+k3;j++)
{
A[i]+=A[i+j]*p[j];
B[i]+=B[i+j]*p[j];
}
}
printf("%.16lf\n",B[]/(-A[]));
}
return ;
}

 博主新手上路,觉得不错的能否赏个赞或关注?

 觉得有写得不好的地方也欢迎大家指正,我会及时修改!

成环的概率dp(初级) zoj 3329的更多相关文章

  1. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  2. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

  3. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  4. zoj 3640 Help Me Escape 概率DP

    记忆化搜索+概率DP 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  5. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  8. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  9. 概率dp专场

    专题链接 第一题--poj3744 Scout YYF I  链接 (简单题) 算是递推题 如果直接推的话 会TLE 会发现 在两个长距离陷阱中间 很长一部分都是重复的 我用 a表示到达i-2步的概率 ...

随机推荐

  1. DAY18、常用模块

    一.random:随机数1.(0,1) 小数:random.random()2.[1,10] 整数:random.randint(1,10)3.[1,10) 整数:random.randrange(1 ...

  2. ftm国际化解决方案

    记录一下踩过的坑,在使用ftm:message的时候我发现这个的国际化是依赖于本地浏览器的语言环境的!关于自主设置这个语言的方法有如下3种:(个人建议使用第二种,可以更加灵活且有效!第一种我这边没有生 ...

  3. scrollbar样式设置

    转载:https://segmentfault.com/a/1190000012800450?utm_source=tag-newest author:specialCoder 一 前言 在CSS 中 ...

  4. IOS 选择会员资格

    选择会员资格 针对所有 Apple 平台进行开发从未如此简单.要开始为 macOS.iOS.tvOS 和 watchOS 开发 app,请从 Mac App Store 下载 Xcode.如果您已准备 ...

  5. 【MT】牛津的MT教程

    Preamble This repository contains the lecture slides and course description for the Deep Natural Lan ...

  6. Git——开启区分大小写

    前言 默认情况下git是忽略区分大小写的,多人合作的情况下不规范很容易造成问题,所以开启区分大小写. 步骤 开启 全局开启 git config --global core.ignorecase fa ...

  7. POJ 1015 Jury Compromise (算竞进阶习题)

    01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...

  8. BZOJ2287 消失之物

    这题貌似是个权限题qwq,我是用离线题库+本地数据包测的 题目大意: 给你\(n\)个体积分别为\(w[i]\)的物品和容积\(m\),问你将每一件物品分别去掉之后,拼出\(1\)~\(m\)中每一个 ...

  9. (Python3 自定义函数实现数字金字塔 代码

    def kzkz(ceng): for i in range(1,ceng+1): print(" "*(ceng-i),end='') n=i while(n>=1): p ...

  10. 转载skbbuf整理笔记

    1.http://blog.csdn.net/yuzhihui_no1/article/details/38666589 2.http://blog.csdn.net/yuzhihui_no1/art ...