[物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解
考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1>p_2$. 试求该流场的速度 $u(x,y)$ 与压力 $p(x)$ (忽略体积力).
解答: 由流体动力学方程组知 $$\beex \bea \cfrac{\p u}{\p x}=0&\ra u=u(y),\\ -\mu \cfrac{\rd^2u}{\rd y^2}+\cfrac{\rd p}{\rd x}=0&\ra \cfrac{\rd ^2p}{\rd x^2}=0\\ &\ra p=p_1+\cfrac{p_2-p_1}{L}x\quad(p(0) =p_1,p(L)=p_2)\\ &\ra \mu \cfrac{\rd ^2u}{\rd y^2}=\cfrac{p_2-p_1}{L}\\ &\ra u=\cfrac{p_2-p_1}{2\mu L}y(y-1)\quad(u(0) =u(1) =0). \eea \eeex$$
[物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解的更多相关文章
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex ...
- [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...
- [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式
试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...
- [物理学与PDEs]第2章习题7 一维不可压理想流体的求解
设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
随机推荐
- Seattle Traffic construction projects punlication
Why are we making this changes? Construction projects will close some transit facilities to buses in ...
- bsp 总结正规流程
1. do boot 之类下载boot的都是将 uboot.bin里的内容下载到flash 0x0位置 => nand dump 0x0Page 00000000 dump: 14 00 00 ...
- vue-cli3
官网 https://cli.vuejs.org/zh/ ie11 的问题 https://stackoverflow.com/questions/52056358/vue-cli-3-project ...
- Centos6.6安装docker
今天在虚拟机上体验一下docker, 操作系统:Centos6.6 内核版本:2.6 1. https://download.csdn.net/download/dujiaoyang000/10872 ...
- python操作MONGODB数据库,提取部分数据再存储
目标:从一个数据库中提取几个集合中的部分数据,组合起来一共一万条.几个集合,不足一千条数据的集合就全部提取,够一千条的就用一万减去不足一千的,再除以大于一千的集合个数,得到的值即为所需提取文档的个数. ...
- openstack搭建之-horizon配置(14)
一.ctrl控制节点安装horizon #安装软件yum install openstack-dashboard -y vim /etc/openstack-dashboard/local_setti ...
- springboot jpa 复合主键
https://blog.csdn.net/wyc_cs/article/details/9031991 创建一个复合主键类 public class LevelPostMultiKeysClass ...
- Python学习之路——迭代器
迭代器 # 通过迭代器取值优缺点: # 优点:不依赖索引,完成取值 # 缺点:不能计算长度,不能指定位取值(只能从前往后逐一取值) 可迭代对象 ''' 可迭代对象: 有__iter__()方法的对象, ...
- python之property、类方法和静态方法
一.完整的property1.定义一个方法被伪装成属性之后,应该可以执行一个属性的增删改查操作,增加和修改就对应着被setter装饰的方法,删除一个属性对应着被deleter装饰的方法. @prope ...
- 清北澡堂 Day2 下午 一些比较重要的数论知识整理
1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...