BZOJ 2169
$f_{ij}$ 表示加入 $i$ 条边, $j$ 个点的度数是奇数的方案数,然后暴力
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a),i##_end=(b);i<=i##_end;++i)
#define For(i,a,b) for(int i=(a),i##_end=(b);i<i##_end;++i)
#define per(i,a,b) for(int i=(b),i##_st=(a);i>=i##_st;--i)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define dbg(x) cerr<<#x" = "<<x<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Es(x,i) for(Edge *i=G[x];i;i=i->nxt)
typedef long long ll;
typedef pair<int,int> pii;
const int inf=~0u>>1,mod=10007;
inline int rd() {
int x,c,f=1;while(!isdigit(c=getchar()))f=c!='-';x=c-'0';
while(isdigit(c=getchar()))x=x*10+c-'0';return f?x:-x;
}
const int N=1011;
char d[N];
int f[N][N],inv[N];
inline int C(int i){return i<2?0:i*(i-1)/2%mod;}
int main(){
#ifdef flukehn
freopen("test.txt","r",stdin);
#endif
inv[1]=1;
For(i,2,N)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int n=rd(),m=rd(),K=rd();
rep(i,1,m){
d[rd()]^=1;
d[rd()]^=1;
}
int p=0;
rep(i,1,n)p+=d[i];
f[0][p]=1;
rep(i,1,K)rep(j,0,n){
f[i][j]=inv[i]*((ll)f[i-1][j]*j*(n-j)%mod+(ll)(j+2<=n?f[i-1][j+2]:0)*C(j+2)%mod+(ll)(j>=2?f[i-1][j-2]:0)*C(n-j+2)%mod-(i>=2?f[i-2][j]:0)*(C(n)-i+2)%mod)%mod;
}
int r=f[K][0];
if(r<0)r+=mod;
cout<<r<<endl;
}
BZOJ 2169的更多相关文章
- bzoj 2169 连边——去重的思想
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 如果之前都去好重了,可以看作这次连的边只会和上一次连的边重复. 可以认为从上上次的状态 ...
- bzoj 2169 连边 —— DP+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 就和这篇博客说的一样:https://blog.csdn.net/WerKeyTom_ ...
- [BZOJ 2169]连边
Description 有N个点(编号1到N)组成的无向图,已经为你连了M条边.请你再连K条边,使得所有的点的度数都是偶数.求有多少种连的方法.要求你连的K条边中不能有重边,但和已经连好的边可以重.不 ...
- BZOJ 2169 连边 DP
思路:DP 提交:\(1\)次(课上刚讲过) 题解: 如果不管重边的话,我们设\(f[i][j]\)表示连了\(i\)条边,\(j\)个点的度数是奇数的方案数,那么显然我们可以分三种状态转移: \(f ...
- [HNOI 2011]卡农
Description 题库链接 在集合 \(S=\{1,2,...,n\}\) 中选出 \(m\) 个子集,满足三点性质: 所有选出的 \(m\) 个子集都不能为空. 所有选出的 \(m\) 个子集 ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
随机推荐
- Studio 5000编程:一种累计时间的编程方法
前言:在很多项目中,需要累计设备的运行.停机.故障时间,当然实现该功能的编程方法也是多种多样,各有千秋,不过有的方法累计误差会越来越大,比如:在连续任务里用定时器来累计时间,就存在一定的误差.本文分享 ...
- 清北学堂学习总结day2
今天是钟皓曦大佬讲课,先来膜一波 %%%%% •数论 数论是这次培训的一个重点,那么什么是数论呢? 数论是研究整数性质的东西,所以理论上day2不会涉及小数QwQ (切入正题) •整除性: 设a, ...
- 使用Mac下的sequel Pro链接数据库时提示错误(已解决)
使用Mac下的sequel Pro链接数据库时,出现如下问题: ? 1 MySQL said: Authentication plugin 'caching_sha2_password' cannot ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- 禁用 urllib3 的安全请求警告
报错情况: 禁用该警告: import urllib3 urllib3.disable_warnings()
- 初学python之路-day09
今天的主要内容为内存管理. 1.引用计数:垃圾回收机制的依据 # 1.变量的值被引用,该值的引用计数 +1 # 2.变量的值被解绑,该值的引用计数 -1 # 3.引用计数为0时就会被垃圾回收机制回收 ...
- 大前端服务器渲染 发布和部署 Vue + vue(SSR)
https://blog.csdn.net/sinat_15951543/article/details/80109521 就是到服务器dist 下面 npm run start & 然 ...
- uni-app版本在线更新问题(下载完成安装时一闪而过,安卓8以上版本)
我使用的是uni-app插件市场https://ext.dcloud.net.cn/plugin?id=142 出现一闪而过时加入权限 <uses-permission android:name ...
- codeblocks 配置 opengl 编程宝典 的 gltools 环境
懒得多说,亲测,这个问题,csdn 和 cnblog 上的博客真的没有一个能解决的. 这个帖子2L的答案则完美解决了问题,虽然步骤有些繁琐,过程还是英文,但考虑到了可能出现的各种问题,跟着走一遍就完美 ...
- VMware对虚拟机快照进行克隆
1.在关机状态下做一个快照 2.把快照管理器打开 3.右键快照,选择“克隆此快照” 4.选择要克隆的快照 5.选择克隆的方式 6.设置名称及保存的位置 注:虚拟机的快照是开机状态,不能对快照进行克隆