在tensorflow中,当定义好结构后,就要通过tf.session()来建立运行时的会话。

本例子应该不难理解,我们用tensorflow来计算一下一个1行2列的矩阵和2行1列矩阵的乘积:

import tensorflow as tf

# 1行2列的矩阵
mat1 = tf.constant([[3, 3]])
# 2行1列的矩阵
mat2 = tf.constant([[2],
[2]]) out = tf.matmul(mat1, mat2) sess = tf.Session()
print(sess.run(out))
sess.close()

输出为:

[[12]]

当然,如果读者熟悉python中的with语句,则也可以用with语句来进行,这样就可以不用管sess.close()方法了,因为with会考虑到自动调用相应资源的释放函数

with tf.Session() as sess:
print(sess.run(out))

这里顺便也用numpy的方式来计算一下相同的矩阵乘法:

import numpy as np
mat1 = np.array([[3, 3]])
mat2 = np.array([[2],
[2]])
print(np.dot(mat1, mat2))

输出也一样为:

[[12]]

tensorflow会话控制-【老鱼学tensorflow】的更多相关文章

  1. tensorflow分类-【老鱼学tensorflow】

    前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是 ...

  2. tensorflow安装-【老鱼学tensorflow】

    TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,Tensor ...

  3. tensorflow例子-【老鱼学tensorflow】

    本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律 ...

  4. tensorflow变量-【老鱼学tensorflow】

    在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义 ...

  5. tensorflow激励函数-【老鱼学tensorflow】

    当我们回到家,如果家里有异样,我们能够很快就会发现家中的异样,那是因为这些异常的摆设在我们的大脑中会产生较强的脑电波. 当我们听到某个单词,我们大脑中跟这个单词相关的神经元会异常兴奋,而同这个单词无关 ...

  6. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

  7. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

  8. tensorflow结果可视化-【老鱼学tensorflow】

    这次我们把上次的结果进行可视化显示,我们会把神经网络的优化过程以图像的方式展示出来,方便我们了解神经网络是如何进行优化的. 首先,我们把测试数据显示出来: # 显示测试数据 fig = plt.fig ...

  9. tensorflow RNN循环神经网络 (分类例子)-【老鱼学tensorflow】

    之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时 ...

随机推荐

  1. 【C/C++】Dijkstra算法的简洁实现

    Dijkstra的实现有很多种,下面给出一种较为简洁和高效的实现,可以作为模板快速使用. 1. 使用邻接表存储图: 2. 使用标准STL的vector存储每个点的所有邻接边: 3. 使用pair记录当 ...

  2. Windows 10 2016 LTS版本下载与激活

    Windows 10 2016 LTS版是针对企业用户推出的长期支持版本,有如下2个优点:1.不会被强制升级.2.去掉小娜,应用商店等不常用的功能,系统相对简洁. 安装文件下载地址如下(x86/x64 ...

  3. Mycat的读写分离

    1. Mycat实现读写分离的部署: https://www.cnblogs.com/softidea/p/5447566.html springboot动态数据源的原理以及配置: Spring内置了 ...

  4. NodeJS跨域问题

    const express = require('express'), app = express(), router = express.Router(), bodyParser = require ...

  5. 微信小程序无法定位

    获取定位的时候报:errMsg:getLocation:fail:require permission desc 错 解决办法: 在app.js加入代码 //app.js新增如下代码 config = ...

  6. Docker:dockerfile镜像的分层 [九]

    一.docker镜像的分层 1.图像呈现 2.命令呈现 [root@oldboy kod]# docker image history kod:v1 IMAGE CREATED CREATED BY ...

  7. vue动态添加对象属性,视图不渲染

    发现数据确实改变了.但是视图没有渲染.原因是赋值的问题,应该这样动态增加属性 vm.$set(vm.template.titleAttachInfoDetail,newKey,newVal) vm 当 ...

  8. Hadoop记录-hadoop jmx配置

    1.hadoop-env.sh添加export HADOOP_JMX_OPTS="-Dcom.sun.management.jmxremote.authenticate=false -Dco ...

  9. LOJ #556. 「Antileaf's Round」咱们去烧菜吧

    好久没更博了 咕咕咕 现在多项式板子的常数巨大...周末好好卡波常吧.... LOJ #556 题意 给定$ m$种物品的出现次数$ B_i$以及大小$ A_i$ 求装满大小为$[1..n]$的背包的 ...

  10. springMVC中controller的几种返回类型

    ==网文1,还不错,感觉比较老旧springMVC中controller的几种返回类型 - CSDN博客http://blog.csdn.net/qq_16071145/article/details ...