The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. jdk各个版本之间的差异

    背景:求职过程中,这个问题反复被问到.如果答不上来,只能说明基本功不扎实,并不能说自己擅长java. 技术趣味史-Java 各个版本的特性 Java 5 2004 年 Sun 公司发布 J2SE5(没 ...

  2. Spark Standalone spark-default.conf

    Example: spark.master spark://master:7077 spark.eventLog.enabled true spark.eventLog.dir hdfs://name ...

  3. org.hibernate.ObjectNotFoundException: No row with the given identifier exists解决办法

    hibernate-取消关联外键引用数据丢失抛异常的设置@NotFound hibernate项目里面配了很多many-to-one的关联,后台在查询数据时已经作了健全性判断,但还是经常抛出对象找不到 ...

  4. 面试:atoi() 与 itoa()函数的内部实现(转)

    原 面试:atoi() 与 itoa()函数的内部实现 2013年04月19日 12:05:56 王世晖 阅读数:918   #include <stdio.h> #include < ...

  5. Node.js实战项目学习系列(4) node 对象(global、process进程、debug调试)

    前言 在之前的课程我们学习了Node的模块化规则,接下来我们将学习下 Node的几个新特性:global ,process进程,debug调试 global 跟在浏览器中的window一样都是全局变量 ...

  6. [物理学与PDEs]第1章第4节 电磁能量和电磁动量, 能量、动量守恒与转化定律 4.3 电磁能量 (动量) 密度, 电磁能量流 (动量流) 密度

    1. 电磁能量密度: $\cfrac{1}{2}\sex{\ve_0E^2+\cfrac{1}{\mu_0}B^2}$. 2. 电磁能量流密度向量: ${\bf S}=\cfrac{1}{\mu_0} ...

  7. end to end testing

    概念 https://www.softwaretestinghelp.com/what-is-end-to-end-testing/ What is “End to End Testing”? Ter ...

  8. 【Unity]】AR小工具-Vuforia

    很有意思的增强现实玩具,六分钟应用. https://www.youtube.com/watch?v=khavGQ7Dy3c

  9. vue之生命周期函数例子

    执行代码看生命周期函数的执行顺序 <!-- 根组件 --> <!-- vue的模板内,所有内容要被一个根节点包含起来 App.vue --> <template> ...

  10. spring的纯注解的IOC配置

    package config; import com.mchange.v2.c3p0.ComboPooledDataSource;import org.apache.commons.dbutils.Q ...