The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. 4.6 并发编程/IO模型

    并发编程/IO模型 背景概念 IO模型概念 IO模型分类 阻塞IO  (blocking IO) 特点: 两个阶段(等待数据和拷贝数据两个阶段)都被block 设置 server.setsockopt ...

  2. FreeNAS-9.10虚拟机测试安装

     虚拟机安装NreeNAS-9.10步骤 需求:网络监控磁盘要扩容 测试环境: CPU 内存 系统盘 共享盘 网卡 2核 2G 20G 20G 桥接 系统版本:FreeNAS-9.10 一.配置虚拟机 ...

  3. <一>企业级开源仓库nexus实战应用–nexus的安装

    1,Nexus 介绍. Nexus是什么? Nexus 是一个强大的maven仓库管理器,它极大地简化了本地内部仓库的维护和外部仓库的访问. 不仅如此,他还可以用来创建yum.pypi.npm.doc ...

  4. 第三节:SignalR之PersistentConnection模型详解(步骤、用法、分组、跨域、第三方调用)

    一. 承上声明 在上一个章节里,啰里啰嗦写了一堆关于介绍SignalR的“废话”,从这一篇开始往后正式撸代码,这期间不少人(包括 张善友大哥)建议我直接用.Net Core下的SignalR,关于此简 ...

  5. 前端面试题整理—Vue篇

     1.对vue的理解,有什么特点,vue为什么不能兼容IE8及以下浏览器 vue是一套用于构建用户界面的渐进式框架,核心是一个响应的数据绑定系统 vue是一款MVVM框架,基于双向绑定数据,当数据发生 ...

  6. 五十二、linux 编程——网络介绍

    52.1 网络介绍 使用远程资源 共享信息.程序和数据 分布处理 52.1.1 协议的概念 计算机网络中实现通信必须有一些约定,如对速率.传输代码.代码结构.传输控制步骤和出错控制等约定,这些约定即被 ...

  7. 面试经验合集-Java后端<一>

    面试一:CDKHXJSYJS   时间:2018-12-29 周六 地点:航天科技大厦32楼   一 技术题目 <回忆版> 1.上下转型 2.Java异常:分类.处理.设计 3.二叉排序树 ...

  8. UDP 单播、广播、多播

    一.UDP广播 广播UDP与单播UDP的区别就是IP地址不同,广播使用广播地址255.255.255.255,将消息发送到在同一广播网络上的每个主机.值得强调的是:本地广播信息是不会被路由器转发.当然 ...

  9. OpenCV掩模mask的原理和作用

    一.什么是掩模mask OpenCV中很多函数都带有一个mask参数,mask被称为掩模.图像掩模一般用来对处理的图像(全部或者局部)进行遮挡,来控制图像处理的区域或处理过程. 二.掩模原理 掩模一般 ...

  10. PHP -- 七牛云 在线视频 获取某一帧作为封面图

    ### 最近碰到视频处理,需要视频封面? 但用的是七牛云存储视频,索性搜了一下,怎么获取视频的某一帧作为视频的封面图... 发现了七牛官网又自身的接口 ### https://developer.qi ...