Spark2.1.1

最近运行spark任务时会发现任务经常运行很久,具体job如下:

Job Id  ▾

Description

Submitted

Duration

Stages: Succeeded/Total

Tasks (for all stages): Succeeded/Total

16

(kill)treeReduce at CRFWithLBFGS.scala:160

2018/12/03 12:39:50

2.3 h

0/5

196/4723

job中正在运行的stage如下:

Stage Id  ▾

Description

Submitted

Duration

Tasks: Succeeded/Total

Input

Output

Shuffle Read

Shuffle Write

60

(kill)treeReduce at CRFWithLBFGS.scala:160+details

2018/12/03 12:39:57

2.3 h

196/200

4.5 GB

   

1455.1 MB

该stage中有4个task一直处于running状态,这些task的统计信息异常(Input Size / RecordsShuffle Write Size / Records均为0.0B/0),并且这4个task都位于同一个executor上:

33

8938

0

RUNNING

PROCESS_LOCAL

12 / $executor_server_ip

stdout

stderr

2018/12/03 12:39:57

2.3 h

 

0.0 B / 0

 

0.0 B / 0

有问题的task所在的executor统计信息也有异常(Total Tasks0),该executor如下:

12

stdout

stderr

$executor_server_ip:36755

0 ms

0

0

0

0

0.0 B / 0

0.0 B / 0

此时Driver堆栈信息如下:

"Driver" #26 prio=5 os_prio=0 tid=0x00007f163a116000 nid=0x5192 waiting on condition [0x00007f15bb9a0000]

java.lang.Thread.State: WAITING (parking)

at sun.misc.Unsafe.park(Native Method)

- parking to wait for  <0x00000001a8c4f9e0> (a scala.concurrent.impl.Promise$CompletionLatch)

at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)

at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)

at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:202)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)

at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:153)

at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:619)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1988)

at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1026)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.reduce(RDD.scala:1008)

at org.apache.spark.rdd.RDD$$anonfun$treeAggregate$1.apply(RDD.scala:1151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1128)

at org.apache.spark.rdd.RDD$$anonfun$treeReduce$1.apply(RDD.scala:1059)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)

at org.apache.spark.rdd.RDD.treeReduce(RDD.scala:1037)

at breeze.optimize.CachedDiffFunction.calculate(CachedDiffFunction.scala:23)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:41)

at breeze.optimize.LineSearch$$anon$1.calculate(LineSearch.scala:30)

at breeze.optimize.StrongWolfeLineSearch.breeze$optimize$StrongWolfeLineSearch$$phi$1(StrongWolfe.scala:69)

at breeze.optimize.StrongWolfeLineSearch$$anonfun$minimize$1.apply$mcVI$sp(StrongWolfe.scala:142)

at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)

at breeze.optimize.StrongWolfeLineSearch.minimize(StrongWolfe.scala:141)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:78)

at breeze.optimize.LBFGS.determineStepSize(LBFGS.scala:40)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:64)

at breeze.optimize.FirstOrderMinimizer$$anonfun$infiniteIterations$1.apply(FirstOrderMinimizer.scala:62)

at scala.collection.Iterator$$anon$7.next(Iterator.scala:129)

at breeze.util.IteratorImplicits$RichIterator$$anon$2.next(Implicits.scala:71)

at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)

at scala.collection.immutable.Range.foreach(Range.scala:160)

at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)

at app.package.AppClass.main(AppClass.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:497)

at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:637)

可见正在runJob,并且等待executor执行结果;

有问题的executor上堆栈信息有一个可疑的thread长时间一直在running:

"shuffle-client-5-4" #94 daemon prio=5 os_prio=0 tid=0x00007fbae0e42800 nid=0x2a3a runnable [0x00007fbae4760000]

java.lang.Thread.State: RUNNABLE

at io.netty.util.Recycler$Stack.scavengeSome(Recycler.java:476)

at io.netty.util.Recycler$Stack.scavenge(Recycler.java:454)

at io.netty.util.Recycler$Stack.pop(Recycler.java:435)

at io.netty.util.Recycler.get(Recycler.java:144)

at io.netty.buffer.PooledUnsafeDirectByteBuf.newInstance(PooledUnsafeDirectByteBuf.java:39)

at io.netty.buffer.PoolArena$DirectArena.newByteBuf(PoolArena.java:727)

at io.netty.buffer.PoolArena.allocate(PoolArena.java:140)

at io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:177)

at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:168)

at io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:129)

at io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)

at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)

at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:652)

at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:575)

at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:489)

at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:451)

at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)

at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)

at java.lang.Thread.run(Thread.java:745)

ps:出问题的executor上当时的内存资源很空闲,进程状态也正常:

-bash-4.2$ free -m

total        used        free      shared  buff/cache   available

Mem:         257676       29251        5274         517      223150      226669

Swap:             0           0           0

怀疑此处可能有死循环,spark2.1.1使用的netty版本是4.0.42,查看netty代码:

io.netty.util.Recycler

        boolean scavengeSome() {

            WeakOrderQueue cursor = this.cursor;

            if (cursor == null) {

                cursor = head;

                if (cursor == null) {

                    return false;

                }

            }

            boolean success = false;

            WeakOrderQueue prev = this.prev;

            do {

                if (cursor.transfer(this)) {

                    success = true;

                    break;

                }

                WeakOrderQueue next = cursor.next;

                if (cursor.owner.get() == null) {

                    // If the thread associated with the queue is gone, unlink it, after

                    // performing a volatile read to confirm there is no data left to collect.

                    // We never unlink the first queue, as we don't want to synchronize on updating the head.

                    if (cursor.hasFinalData()) {

                        for (;;) {

                            if (cursor.transfer(this)) {

                                success = true;

                            } else {

                                break;

                            }

                        }

                    }

                    if (prev != null) {

                        prev.next = next;

                    }

                } else {

                    prev = cursor;

                }

                cursor = next;

            } while (cursor != null && !success);

            this.prev = prev;

            this.cursor = cursor;

            return success;

        }

问题在于cursor初始化的时候没有清空prev:

if (cursor == null) {

cursor = head;

该问题在4.0.43中被修复,升级spark2.1.1中的netty到4.0.43或以上版本可以修复问题;

官方issues位于:https://github.com/netty/netty/issues/6153

【原创】大叔问题定位分享(7)Spark任务中Job进度卡住不动的更多相关文章

  1. 【原创】大叔问题定位分享(18)beeline连接spark thrift有时会卡住

    spark 2.1.1 beeline连接spark thrift之后,执行use database有时会卡住,而use database 在server端对应的是 setCurrentDatabas ...

  2. 【原创】大叔问题定位分享(10)提交spark任务偶尔报错 org.apache.spark.SparkException: A master URL must be set in your configuration

    spark 2.1.1 一 问题重现 问题代码示例 object MethodPositionTest { val sparkConf = new SparkConf().setAppName(&qu ...

  3. 【原创】大叔问题定位分享(27)spark中rdd.cache

    spark 2.1.1 spark应用中有一些task非常慢,持续10个小时,有一个task日志如下: 2019-01-24 21:38:56,024 [dispatcher-event-loop-2 ...

  4. 【原创】大叔问题定位分享(21)spark执行insert overwrite非常慢,比hive还要慢

    最近把一些sql执行从hive改到spark,发现执行更慢,sql主要是一些insert overwrite操作,从执行计划看到,用到InsertIntoHiveTable spark-sql> ...

  5. 【原创】大叔问题定位分享(19)spark task在executors上分布不均

    最近提交一个spark应用之后发现执行非常慢,点开spark web ui之后发现卡在一个job的一个stage上,这个stage有100000个task,但是绝大部分task都分配到两个execut ...

  6. 【原创】大叔问题定位分享(17)spark查orc格式数据偶尔报错NullPointerException

    spark查orc格式的数据有时会报这个错 Caused by: java.lang.NullPointerException at org.apache.hadoop.hive.ql.io.orc. ...

  7. 【原创】大叔问题定位分享(16)spark写数据到hive外部表报错ClassCastException: org.apache.hadoop.hive.hbase.HiveHBaseTableOutputFormat cannot be cast to org.apache.hadoop.hive.ql.io.HiveOutputFormat

    spark 2.1.1 spark在写数据到hive外部表(底层数据在hbase中)时会报错 Caused by: java.lang.ClassCastException: org.apache.h ...

  8. 【原创】大叔问题定位分享(15)spark写parquet数据报错ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead

    spark 2.1.1 spark里执行sql报错 insert overwrite table test_parquet_table select * from dummy 报错如下: org.ap ...

  9. 【原创】大叔问题定位分享(12)Spark保存文本类型文件(text、csv、json等)到hdfs时为什么是压缩格式的

    问题重现 rdd.repartition(1).write.csv(outPath) 写文件之后发现文件是压缩过的 write时首先会获取hadoopConf,然后从中获取是否压缩以及压缩格式 org ...

随机推荐

  1. python操作MONGODB数据库,提取部分数据再存储

    目标:从一个数据库中提取几个集合中的部分数据,组合起来一共一万条.几个集合,不足一千条数据的集合就全部提取,够一千条的就用一万减去不足一千的,再除以大于一千的集合个数,得到的值即为所需提取文档的个数. ...

  2. Python学习之路——三元运算符推导式

    三元运算符 # 生成器:包含yield关键字的函数就是生成器 def my_generator(): yield 1 yield 2 yield 3 g_obj = my_generator() # ...

  3. fullpage.js参数参考

    fullpage函数里面的参数: //Navigationmenu: false,//绑定菜单,设定的相关属性与anchors的值对应后,菜单可以控制滚动,默认为false.anchors:['fir ...

  4. MongoDB和pymongo的CURD

    一.mongodb 1.介绍 MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之 ...

  5. Tomcat 部署java web项目直接ip地址访问项目

    正常情况下,在访问在Tomcat中部署的项目是 http://localhost:8080/demo 方式 其中,IP,端口,项目名(Demo)都是必须的. 那么,怎么样才能通过 http://loc ...

  6. 柳叶刀重磅出击!全外显子测序在胎儿结构异常的评估Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study

    柳叶刀发表的文献解读:Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective coh ...

  7. 分享4个运维平台工具OSSIM、Ansible的学习思路

    对于当今企业安全来说,真正价值不在于亡羊补牢,也不在于一个或多个高危漏洞.企业在乎的是如何防患于未然,如何快速定位攻击,如何快速解决安全问题.OSSIM作为开源的安全信息管理平台,对于企业的需求来说毋 ...

  8. Security+认证812分轻松考过(备战分享)

    2019.02.12,开工第一天,我参加了security+考试并顺利通过了考试,812分的成绩有点出乎我的意料,据我所知我周围还没有人考过800分的.怀着愉悦的心态分享下我的备考经历和考试经验. 备 ...

  9. Python并发编程之同步\异步and阻塞\非阻塞

    一.什么是进程 进程: 正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 进程和程序的区别: 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程. 需要强调的是:同一个程序执行两次,那也 ...

  10. node安装express-generator脚手架

    参考网址:https://www.jianshu.com/p/b555ba6f4067 全局安装: npm install express-generator -g 创建项目pro_test expr ...