传送门

数列与方程

  首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数。

  由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$。

  因此,可以构成边长为$a_{n+1}$,$S_n$,1的三角形,$S_n$与1的夹角为$\frac{3\pi}{4}$。得$\frac{a_{n+1}}{sin\frac{3\pi}{4}}=\frac{1}{sin\theta}$,当斜边为$a_{n+1}$时,$\theta=(\frac{1}{2})^{n-1}*\frac{\pi}{2^{n+2}}$。于是$a_n=\frac{\sqrt{2}}{2*sin\frac{\pi}{2^{n+1}}}$

  定位:中等偏困难题

GMA Round 1 数列与方程的更多相关文章

  1. GMA Round 1 数列求和(Hard)

    传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数) ...

  2. GMA Round 1 数列求单项

    传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n ...

  3. GMA Round 1

    学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...

  4. GMA Round 1 奇怪的数列

    传送门 奇怪的数列 已知数列{$a_n$},$a_1=1$,$a_{n+1}=a_n+\frac{1}{a_n}$,现在需要你估计$a_{233333}$的值,求出它的整数部分即可. 将原等式两边平方 ...

  5. GMA Round 1 最短距离

    传送门 最短距离 在椭圆C:$\frac{x^2}{20^2}+\frac{y^2}{18^2}=1$上作两条相互垂直的切线,切线交点为P,求P到椭圆C的最短距离.结果保留6位小数. 设椭圆方程:$\ ...

  6. GMA Round 1 极坐标的愤怒

    传送门 极坐标的愤怒 我也想被积分啊!可是为什么你们从来不知道我的心意!——极坐标 愤怒会夺走理智,哪怕是被迫的也好,请为极坐标方程$r=t$(也写作$ρ=θ$)积分吧. 为了考验你的忠诚,你需要回答 ...

  7. GMA Round 1 极坐标的忧伤

    传送门 极坐标的忧伤 为什么你们不喜欢为我求导……——极坐标 极坐标的心意,想必已经传达到了,那么请为极坐标方程$r=t$(也写作$ρ=θ$)求导吧. 为了考验你的忠诚,你需要回答$r=t$在(0,$ ...

  8. [美团 CodeM 初赛 Round A]数列互质

    题目大意: 给出一个长度为n的数列a1,a2,a3,...,an,以及m组询问(li,ri,ki),求区间[li,ri]中有多少数在该区间中的出现次数与ki互质. 思路: 莫队. f[i]记录数字i出 ...

  9. GMA Round 1 离心率

    传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...

随机推荐

  1. Kubernetes之StatefulSet

    什么是StatefulSet StatefulSet 是Kubernetes中的一种控制器,他解决的什么问题呢?我们知道Deployment是对应用做了一个简化设置,Deployment认为一个应用的 ...

  2. Python 文件读取

    1. 最基本的读文件方法: # File: readline-example-1.py file = open("sample.txt") while 1: line = file ...

  3. 【转载】C++ vector的用法

    http://www.cnblogs.com/Nonono-nw/p/3462183.html

  4. excel转换为TXT文本

    #_*_ coding:utf-8 _*_#author:yr import xlrd data = xlrd.open_workbook(r"C:\Users\yangr\Desktop\ ...

  5. [译]Ocelot - Request Id / Correlation Id

    原文 Ocelot可以通过header的形式发送一个requestid.ocelot会将这个requestid转发到下游服务. 如果在日志配置中设置了IncludeScopes为true,那么requ ...

  6. iTOP-4418开发板Qt系统下运行摄像头测试程序

    编译环境:Ubuntu 12.04 交叉编译工具链:gcc 4.4.1 一.添加编译器的环境变量 打开~/.bashrc文件,修改环境变量,如下图:   修改完后,更新环境变量,使用命令”source ...

  7. Ansible-----条件判断与错误处理

    when 在ansible中,条件判断的关键词是when --- - hosts: all remote_user: root tasks: - debug: msg: "System re ...

  8. day14 带参装饰器、迭代器、生成器

    """ 今日内容: 1.带参装饰器及warps 2.迭代器 3.生成器 """ """ # 一.带参装饰器及w ...

  9. docker创建Redis集群

    开始工作: yum install wegt ##安装下载工具 yum install net-tools ##安装网络工具 yum install tree ##安装tree命令(方便查看集群配置文 ...

  10. Beta冲刺(2/7)

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(2/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 整理博客 做了点商家数据表格 接下来的计划 做 ...