GMA Round 1 数列与方程
数列与方程
首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数。
由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$。
因此,可以构成边长为$a_{n+1}$,$S_n$,1的三角形,$S_n$与1的夹角为$\frac{3\pi}{4}$。得$\frac{a_{n+1}}{sin\frac{3\pi}{4}}=\frac{1}{sin\theta}$,当斜边为$a_{n+1}$时,$\theta=(\frac{1}{2})^{n-1}*\frac{\pi}{2^{n+2}}$。于是$a_n=\frac{\sqrt{2}}{2*sin\frac{\pi}{2^{n+1}}}$
定位:中等偏困难题
GMA Round 1 数列与方程的更多相关文章
- GMA Round 1 数列求和(Hard)
传送门 数列求和(Hard) 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数) ...
- GMA Round 1 数列求单项
传送门 数列求单项 在数列{$a_n$}中,$a_1=-\frac{1}{4}$,$\frac{1}{a_{n+1}}+\frac{1}{a_n}=\begin{cases}-3(n为偶数)\\3(n ...
- GMA Round 1
学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...
- GMA Round 1 奇怪的数列
传送门 奇怪的数列 已知数列{$a_n$},$a_1=1$,$a_{n+1}=a_n+\frac{1}{a_n}$,现在需要你估计$a_{233333}$的值,求出它的整数部分即可. 将原等式两边平方 ...
- GMA Round 1 最短距离
传送门 最短距离 在椭圆C:$\frac{x^2}{20^2}+\frac{y^2}{18^2}=1$上作两条相互垂直的切线,切线交点为P,求P到椭圆C的最短距离.结果保留6位小数. 设椭圆方程:$\ ...
- GMA Round 1 极坐标的愤怒
传送门 极坐标的愤怒 我也想被积分啊!可是为什么你们从来不知道我的心意!——极坐标 愤怒会夺走理智,哪怕是被迫的也好,请为极坐标方程$r=t$(也写作$ρ=θ$)积分吧. 为了考验你的忠诚,你需要回答 ...
- GMA Round 1 极坐标的忧伤
传送门 极坐标的忧伤 为什么你们不喜欢为我求导……——极坐标 极坐标的心意,想必已经传达到了,那么请为极坐标方程$r=t$(也写作$ρ=θ$)求导吧. 为了考验你的忠诚,你需要回答$r=t$在(0,$ ...
- [美团 CodeM 初赛 Round A]数列互质
题目大意: 给出一个长度为n的数列a1,a2,a3,...,an,以及m组询问(li,ri,ki),求区间[li,ri]中有多少数在该区间中的出现次数与ki互质. 思路: 莫队. f[i]记录数字i出 ...
- GMA Round 1 离心率
传送门 离心率 P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上一点,F1.F2为椭圆左右焦点.△PF1F2内心为M,直线PM与x轴相交于点N,NF1:NF2=4:3. ...
随机推荐
- Fiddler--Composer
Composer选项卡支持手动构建和发请求:也可以在Session列表中拖拽Session放到Composer中,把该Session的请求复制到用户界面: 点击"execute"按 ...
- MongoDB 3.6.9 集群搭建 - 切片+副本集
1. 环境准备 在Mongo的官网下载Linux版本安装包,然后解压到对应的目录下:由于资源有限,我们采用Replica Sets + Sharding方式来配置高可用.结构图如下所示: 这里我说明下 ...
- 《JavaScript.DOM》读书笔记
- [再寄小读者之数学篇](2014-06-22 发散级数 [中国科学技术大学2012年高等数学B考研试题])
设 $a_n>0$, $S_n=a_1+a_2+\cdots+a_n$, 级数 $\dps{\vsm{n}a_n}$ 发散, 证明: $\dps{\vsm{n}\cfrac{a_n}{S_n}} ...
- sql where,group by ,having,order by用法和区别
select 子句 指定列 可放置分组函数 where子句:限制行 group by 子句:对数据进行分组 和 having子句:限定组.和group by 一起使用 (对分组时候进行筛选)可放置分组 ...
- hinernate-实体对象的3种状态
瞬时状态---持久化状态---游离态 瞬时状态:实体对象中没有id,没有与session关联 持久化状态:实体对象中有id,与session有关联 游离态:实体对象中有id,没有与session关联 ...
- jsonp简介
jsonp主要是利用script的跨域.简单点说就是像img,css,js这样的文件是跨域的,这也就是为什么我们能够利用cdn进行加速的原因.而且像js这样的文件,如果里面是一个自执行的代码,比如: ...
- 墨水屏 E-Paper module【转】
转自:https://blog.csdn.net/smallmount123/article/details/77489196 https://www.digikey.com/product-deta ...
- selenium——键盘操作
很多键盘操作实际是没有意义的.
- 20 常用模块 hashlib hmac:加密 xml xlrd xlwt:excel读|写 configparser subprocess
hashlib模块:加密 加密: 1.有解密的加密方式 2.无解密的加密方式:碰撞检查 hashlib -- 1)不同数据加密后的结果一定不一致 -- 2)相同数据的加密结果一定是一致的 import ...