5.3Python数据处理篇之Sympy系列(三)---简化操作
5.3简化操作
目录
前言
既然sympy是对于符号的运算,那么它对于符号表达式的简化与展开一定很强大。
今天我们学习的是符号表达式的简化与展开。
本章节对应官网的Simplification
(一)有理数与多项式的简化
1.最简化-simplify()
(1)说明:
simplify()是尽可能的让表达式最简化,其最简化的形式是不定的。
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = cos(x)**2+sin(x)**2
expr2 = (x**3 + x**2 - x - 1)/(x**2 + 2*x + 1)
# 简化表达式
r1 = simplify(expr1)
r2 = simplify(expr2)
print(r1)
print(r2)
(3)输出:
\(cos(x)^2+sin(x)^2\)-->1
\((x^3 + x^2 - x - 1)/(x^2 + 2x + 1)\)-->\(x-1\)
2.展开-expand()
(1)说明:
expand()是对括号里的多项式进行展开。
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = (x+1)**2
expr2 = ((x + 1)*(x - 2) - (x - 1)*x)
# 展开
r1 = expand(expr1)
r2 = expand(expr2)
print(r1)
print(r2)
(3)输出:
\((x+1)^2\)-->\(x^2+2x+1\)
\((x + 1)(x - 2) - (x - 1)x\)-->-2
3.提公因式-factor()
(1)说明:
factor()是对展开的多项式进行提公因式
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = (x ** 3 - x ** 2 + x - 1)
# 提公因数
r1 = factor(expr1)
print(r1)
print(latex(expr1))
print(latex(r1))
(3)输出:
\(x^{3} - x^{2} + x - 1\)-->\(\left(x - 1\right) \left(x^{2} + 1\right)\)
4.合并同类项-ceiling()
(1)说明:
对于多项式进行合并同类项
(2)源代码:
from sympy import *
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
expr1 = x*y + x - 3 + 2*x**2 - z*x**2 + x**3
expr2 = x**3+x*2-3*x**2+x**3-x**2+x*4-5
# 合并同类项
r1 = ceiling(expr1)
r2 = ceiling(expr2)
print(r1)
print(r2)
print(latex(r1))
print(latex(r2))
(3)输出:
\(xy + x - 3 + 2x^2 - zx^2 + x^3\) --> \(\lceil{x^{3} - x^{2} z + 2 x^{2} + x y + x}\rceil - 3\)
\(x^3+x2-3x^2+x^3-x^2+x4-5\) --> \(\lceil{2 x^{3} - 4 x^{2} + 6 x}\rceil - 5\)
5.简化分式-cancel()
(1)说明:
cancle既有约分又有简化的作用
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = (x**2 + 2*x + 1)/(x**2 + x)
expr2 = 1/x + (3*x/2 - 2)/(x - 4)
# 约分消去分式的公因数
r1 = cancel(expr1)
# 简化分式
r2 = cancel(expr2)
# 结果
print("结果:r1", r1)
print("结果:r2", r2)
# r1的表达式与结果
print("r1的表达式与结果:")
print(latex((x**2 + 2*x + 1)/(x**2 + x)))
print(latex(r1))
# r2的表达式与结果
print("\nr2的表达式与结果:")
print(latex(1/x + (3*x/2 - 2)/(x - 4)))
print(latex(r2))
(3)输出:
\(\frac{x^{2} + 2 x + 1}{x^{2} + x}\) --》 \(\frac{x + 1}{x}\)
\(\frac{\frac{3 x}{2} - 2}{x - 4} + \frac{1}{x}\) --》 \(\frac{3 x^{2} - 2 x - 8}{2 x^{2} - 8 x}\)
6.分式展开-apart()
(1)说明:
原本只有一项的分式表达式,展开为多项的分式表达式。
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
# 对于分式进行展开
r1 = apart(expr1)
print(r1)
print(latex(r1))
print(latex(expr1))
(3)输出:
\]
---》
\]
(二)三角函数的简化
1.三角形的简化-trigsimp()
(1)说明:
使用trigsimp()可以简化三角函数,反三角函数也可以。
(2)源代码:
from sympy import *
x = Symbol('x')
expr1 = sin(x)**2+cos(x)**2
expr2 = sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4
# 进行三角形简化
r1 = trigsimp(expr1)
r2 = trigsimp(expr2)
print("r1:", r1)
print("r2:", r2)
# r1的latex
print("="*20)
print("expr1-latex:", latex(expr1))
print("r1-latex:", latex(r1))
# r2的latex
print("="*20)
print("expr2-latex:", latex(expr2))
print("r2-latex:", latex(r2))
(3)输出:
\(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\) --> \(1\)
\(\sin^{4}{\left (x \right )} - 2 \sin^{2}{\left (x \right )} \cos^{2}{\left (x \right )} + \cos^{4}{\left (x \right )}\) --> \(\frac{\cos{\left (4 x \right )}}{2} + \frac{1}{2}\)
2.三角形的展开-expand_trig()
(1)说明:
使用expand_trig()可以展开三角函数,同样反三角函数也可以。
(2)源代码:
from sympy import *
x = Symbol('x')
y = Symbol('y')
expr1 = sin(x+y)
expr2 = tan(2*x)
# 三角形的展开
r1 = expand_trig(expr1)
r2 = expand_trig(expr2)
print("===========r1==========")
print(r1)
print(latex(expr1))
print(latex(r1))
print("===========r2==========")
print(r2)
print(latex(expr2))
print(latex(r2))
(3)输出:
\(\sin{\left (x + y \right )}\) --> \(\sin{\left (x \right )} \cos{\left (y \right )} + \sin{\left (y \right )} \cos{\left (x \right )}\)
\(\tan{\left (2 x \right )}\) --> \(\frac{2 \tan{\left (x \right )}}{- \tan^{2}{\left (x \right )} + 1}\)
(三)指数函数的简化
1.指数的合并一-powsimp()
(1)说明:
powsimp()主要用于同底数或者同指数
(2)源代码:
from sympy import *
# 假设 x与y 是正值, a 是真实的值
x = Symbol('x', positive=True)
y = Symbol('y', positive=True)
a = Symbol('a', real=True)
expr1 = x**2*x**3
expr2 = x**a*y**a
# 进行指数的合并,如果不符合,则不进行简化
r1 = powsimp(expr1)
r2 = powsimp(expr2)
print("===========r1==========")
print(r1)
print(latex(expr1))
print(latex(r1))
print("===========r2==========")
print(r2)
print(latex(expr2))
print(latex(r2))
(3)输出:
\(x^2x^3\) --> \(x^5\)
\(x^ay^b\) --> \(\left(x y\right)^{a}\)
2.指数的合并二-powdenest()
(1)说明:
powdenest()主要用于只有一个底数的不同指数。
(2)源代码:
from sympy import *
# 假设 x与y 是正值, a 是真实的值
x = Symbol('x', positive=True)
y = Symbol('y', positive=True)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
expr1 = (x**a)**b
expr2 = (((x**2)**a)**b)
# 进行指数的合并,如果不符合,则不进行简化
r1 = powdenest(expr1)
r2 = powdenest(expr2)
print("===========r1==========")
print(r1)
print(latex(expr1))
print(latex(r1))
print("===========r2==========")
print(r2)
print(latex(expr2))
print(latex(r2))
(3)输出:
\((x^a)^b\) --> \(x^{ab}\)
\({{x^2}^a}^b\) --> \(x^{2ab}\)
3.指数的展开:-expand_power_exp\expand_power_base
(1)说明:
- expand_power_exp()用于同底数的展开
- expand_power_base()用于同指数的展开
(2)源代码:
from sympy import *
# 假设 x与y 是正值, a 是真实的值
x = Symbol('x', positive=True)
y = Symbol('y', positive=True)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
expr1 = x**(a+b)
expr2 = (x*y)**a
# 进行指数的展开
# 底数相同展开
r1 = expand_power_exp(expr1)
# 指数相同展开
r2 = expand_power_base(expr2)
print("===========r1==========")
print(r1)
print(latex(expr1))
print(latex(r1))
print("===========r2==========")
print(r2)
print(latex(expr2))
print(latex(r2))
(3)输出:
\(x^{a+b}\) --> \(x^{a} x^{b}\)
\(\left(x y\right)^{a}\) --> \(x^{a} y^{a}\)
(四)对数函数的简化
1.对数的简化-logcombine()
(1)说明:
logcombine()用于合并对数。
(2)源代码:
from sympy import *
# 假设 x与y 是正值, a 是真实的值
x = Symbol('x', positive=True)
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
expr1 = log(x) + log(y)
expr2 = log(x) - log(y)
expr3 = n*log(x)
# 对于对数的展开
r1 = logcombine(expr1)
r2 = logcombine(expr2)
r3 = logcombine(expr3)
print(r1)
print(r2)
print(r3)
(3)输出:
\(log(x) + log(y)\) --> \(log(xy)\)
\(log(x)-log(y)\) --> \(\log(xy)\)
\(n\log(x)\) --> \(log(x^n)\)
2.对数的展开-expand_log()
(1)说明:
expand_log()用于对数的展开。
(2)源代码:
from sympy import *
# 假设 x与y 是正值, a 是真实的值
x = Symbol('x', positive=True)
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
expr1 = log(x*y)
expr2 = log(x/y)
expr3 = log(x**n)
# 对于对数的展开
r1 = expand_log(expr1)
r2 = expand_log(expr2)
r3 = expand_log(expr3)
print(r1)
print(r2)
print(r3)
(3)输出:
\(log(xy)\) --> \(log(x)+log(y)\)
\(log(x/y)\) --> \(log(x)-\log(y)\)
\(log(x^n)\) --> \(n\log(x)\)
(五)其他函数的简化
1.阶乘与排列组合-factorial()\binomial()
(1)说明:
- factorial()用于求阶乘
- binomial()用于求排列组合
(2)源代码:
from sympy import *
n = Symbol("n")
# 求阶乘
r1 = factorial(3)
r2 = factorial(n)
print(r1)
print(r2)
# 排列组合
print(binomial(4, 2))
(3)输出:
作者:Mark
日期:2019/03/16 周六
5.3Python数据处理篇之Sympy系列(三)---简化操作的更多相关文章
- 4.3Python数据处理篇之Matplotlib系列(三)---plt.plot()折线图
目录 前言 (一)plt.plot()函数的本质 ==1.说明== ==2.源代码== ==3.展示效果== (二)plt.plot()函数缺省x时 ==1.说明== ==2.源代码== ==3.展示 ...
- 3.3Python数据处理篇之Numpy系列(三)---数组的索引与切片
目录 (一)数组的索引与切片 1.说明: 2.实例: (二)多维数组的索引与切片 1.说明: 2.实例: 目录: 1.一维数组的索引与切片 2.多维数组的索引与切片 (一)数组的索引与切片 1.说明: ...
- 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作
目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...
- 5.5Python数据处理篇之Sympy系列(五)---解方程
目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...
- 5.4Python数据处理篇之Sympy系列(四)---微积分
目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...
- 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作
目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...
- 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识
目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...
- 3.6Python数据处理篇之Numpy系列(六)---Numpy随机函数
目录 目录 前言 (一)基础的随机函数 (二)轴的随机函数 (三)概率的随机函数 目录 前言 前一段日子学了numpy,觉得无趣,没有学完,不过后来看了看matplotlib,sympy等库时,频频用 ...
- 4.13Python数据处理篇之Matplotlib系列(十三)---轴的设置
目录 目录 前言 (一)设置轴的范围 1.同时对于x,y轴设置 2.分别对与x,y轴的设置 (二)设置刻度的大小 1.普通的刻度设置 2.添加文本的刻度设置 3.主副刻度的设置 (三)设置轴的数据 1 ...
随机推荐
- WebApi使用cors配置跨域问题
1.首先安装CORS,在WebApiCors项目上面使用Nuget搜索“microsoft.aspnet.webapi.cors”,安装第一个 2.当我们安装这个包之后,现有的packages目录下会 ...
- asp.net core系列 38 WebAPI 返回类型与响应格式--必备
一.返回类型 ASP.NET Core 提供以下 Web API Action方法返回类型选项,以及说明每种返回类型的最佳适用情况: (1) 固定类型 (2) IActionResult (3) Ac ...
- asp.net core系列 34 EF保存数据(1)
一. 基本数据 每个EF上下文实例都有一个 ChangeTracker(更改跟踪器),它负责跟踪需要写入数据库的更改. 当更改实体类的实例时(修改属性,删除实例,新建实例等),这些更改会记录在 Cha ...
- TCP连接有效性检测方法
在写TCP服务的时候经常需要面对的问题就是如何知道一个TCP连接当前是否有效,但这个问题对很多初入门的同学来说是很困惑的,主要原因是当对方关闭连接后,另一方无法有效的知道:对于同步操作来说可以通过设置 ...
- java~@Async异步功能
@Async注解,可以实现异步处理的功能,它可以有返回值,或者直接在新线程时并行执行一个任务,对于异步来说,它的执行是有条件的,你需要把异步代码块放在单独的类里,当spring在注入时,才不会相互影响 ...
- 为啥用ip不可以访问知乎,而百度却可以?
我们先来ping知乎的域名,然后可以得到响应的服务器的ip 之后我们用浏览器来访问这个ip,结果如下 被拒绝访问了. 而用ip来访问百度,则没啥问题,如图 访问知乎的时候,域名可以访问,ip不可以访问 ...
- 前端笔记之JavaScript(十二)缓冲公式&检测设备&Data日期
一.JavaScript缓冲公式ease 原生JS没有自己的缓冲公式,但是你要自己推理的话,必须要懂一些数学和物理公式: 让div用100毫秒(帧),从left100px的位置变化到left800px ...
- Chapter 5 Blood Type——21
"Bella." Edward's voice was right beside me, relieved now. "Can you hear me?" “B ...
- Spring Boot分布式系统实践【扩展1】shiro+redis实现session共享、simplesession反序列化失败的问题定位及反思改进
前言 调试之前请先关闭Favicon配置 spring: favicon: enabled: false 不然会发现有2个请求(如果用nginx+ 浏览器调试的话) 序列化工具类[ ...
- leetcode — scramble-string
import java.util.Arrays; /** * Source : https://oj.leetcode.com/problems/scramble-string/ * * Given ...