BZOJ.4151.[AMPPZ2014]The Cave(结论)
不是很懂他们为什么都要DFS三次。于是稳拿Rank1 qwq。
(三道题两个Rank1一个Rank3效率是不是有点高qwq?)
记以\(1\)为根DFS时每个点的深度是\(dep_i\)。对于一条限制\((a,b,D)\),满足条件的点\(x\)满足:\(dep_a+dep_b-2dep_x\leq D\Rightarrow dep_x\geq\frac{dep_u+dep_v-D}{2}\)。
那么\(dep_x\)最小是\(\max\{0,\ \lceil\frac{dep_u+dep_v-D}{2}\rceil\}\)(先不考虑负数的情况)。
记\(p\)为所有\(m\)条限制中,\(\max\{0,\ \lceil\frac{dep_u+dep_v-D}{2}\rceil\}\)最大的那个点\(x\)。
有一个结论是:若\(p\)不能满足所有限制,则一定无解。否则\(p\)为一个合法的解。
\(p\)就是要求最严格的限制所对应的那个点。对于和\(p\)不在同一棵子树里的限制,显然该限制要满足\(p\);在同一棵子树内的,因为\(p\)是最严格的,所以只要满足\(p\)就可以啦。
//13032kb 76ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=3e5+5;
int Enum,H[N],nxt[N<<1],to[N<<1],fa[N],dep[N],A[N],B[N],D[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void DFS(int x)
{
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x]) fa[v]=x, dep[v]=dep[x]+1, DFS(v);
}
int main()
{
for(int T=read(); T--; )
{
const int n=read(),m=read();
Enum=0, memset(H,0,n+1<<2);
for(int i=1; i<n; ++i) AE(read(),read());
dep[1]=0, fa[1]=0, DFS(1);
int mx=0,p=0;
for(int i=1; i<=m; ++i)
{
int t=dep[A[i]=read()]+dep[B[i]=read()]-(D[i]=read());
if(t>mx) mx=t, p=i;
}
if(!mx) {puts("TAK 1"); continue;}
int x=A[p];
for(int t=dep[x]-(mx+1)/2; t>0; --t,x=fa[x]);
dep[x]=0, fa[x]=0, DFS(x);
bool fg=1;
for(int i=1; i<=m; ++i)
if(dep[A[i]]+dep[B[i]]>D[i]) {fg=0; break;}
fg?printf("TAK %d\n",x):puts("NIE");
}
return 0;
}
BZOJ.4151.[AMPPZ2014]The Cave(结论)的更多相关文章
- bzoj 4152[AMPPZ2014]The Captain
bzoj 4152[AMPPZ2014]The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. ...
- 【BZOJ 4151 The Cave】
Time Limit: 5 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 293 Solved: 144[Submit][Status][Di ...
- 【BZOJ】2049: [Sdoi2008]Cave 洞穴勘测(lct/并查集)
http://www.lydsy.com/JudgeOnline/problem.php?id=2049 bzoj挂了..在wikioi提交,,1A-写lct的速度越来越快了-都不用debug-- 新 ...
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain
循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...
- BZOJ 4152: [AMPPZ2014]The Captain( 最短路 )
先按x排序, 然后只有相邻节点的边才有用, 我们连起来, 再按y排序做相同操作...然后就dijkstra ---------------------------------------------- ...
- BZOJ 4143: [AMPPZ2014]The Lawyer( sort )
水题... 排序搞出每天的会议有哪些, 然后再按照会议的开始时间和结束时间排序, 最晚开始的和最早结束的会议不是同一场而且最晚开始的时间>最早结束的会议就有可能方案 -------------- ...
- BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )
我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...
- BZOJ.4144.[AMPPZ2014]Petrol(Kruskal重构树)
BZOJ 看别人代码的时候发现哪一步都很眼熟,突然想起来,就在四个月前我好像看过还给别人讲过?mmp=v= 果然不写写就是容易忘.写了好歹忘了的时候还能复习呢(虽然和看别人的好像也没多少差别?). 首 ...
随机推荐
- Linux 文本去重 之 命令sort 与 uniq
sort [-fbMnrtuk] [file or stdin] 选项与参数: -f :忽略大小写的差异,例如 A 与 a 视为编码相同: -b :忽略最前面的空格符部分: -M :以月份的名字来排序 ...
- HDU-6397(2018 Multi-University Training Contest 8) Character Encoding(生成函数+组合数学)
题意 从$0$到$n-1$的数字里可重复的取至多$m$个数的和等于$k$的方案数. 思路 显然的生成函数的思路为构造 $(1+x+x^{2}+...+x^{n-1})^{m}$ 那么$x^{k}$的系 ...
- Standford NLP study
Homepage https://stanfordnlp.github.io/CoreNLP/index.html Source Code: https://github.com/stanfordnl ...
- Visual Studio Code(VS code)你们都在用吗?或许你们需要看一下这篇博文
写在前面 在前端开发中,有一个非常好用的工具,Visual Studio Code,简称VS code. 都不用我安利VS code,大家就会乖乖的去用,无数个大言不惭的攻城狮,都被VS code比德 ...
- python2编码问题
前言:python3解决了编码的问题,但python2还存在很多编码问题,用P2写爬虫爬了网页,解析时常有不同字符混着编码,导致解码问题成为爬虫程序员的噩梦... 但咱们要用robot framewo ...
- docker使用方式
docker使用方式安装:1.安装依赖 yum install -y yum-utils \ device-mapper-persistent-data \ lvm2 2添加yum源 yum-conf ...
- python selenium 模块
控制已打开的浏览器 https://www.cnblogs.com/lovealways/p/9813059.html selenium.自动填充文本框.自动点按钮 https://blog.csdn ...
- input子系统学习笔记六 按键驱动实例分析下【转】
转自:http://blog.chinaunix.net/uid-20776117-id-3212095.html 本文接着input子系统学习笔记五 按键驱动实例分析上接续分析这个按键驱动实例! i ...
- 西瓜视频蓝光1080P下载方法
西瓜视频的蓝光画质只能在APP上看,如何获取1080P画质的地址呢? 1.先安装 WinPcap 2.然后安装夜神安卓模拟器NOX 3.NOX模拟器里安装西瓜视频的最新APP,旧版本APP只提供超清模 ...
- springboo+nginx测试反向代理01
操作环境:centos7,springboot2.1,nginx1.8.1 boot程序链接地址 : https://github.com/zgq7/nginxDemo nginx下载地址: http ...