When wake up, lxhgww find himself in a huge maze.

The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room). 
What is the expect number of tunnels he go through before he find the exit? 

InputFirst line is an integer T (T ≤ 30), the number of test cases.

At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room. 
OutputFor each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”. 
Sample Input

3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60

Sample Output

Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522 类似的一题:hdu3853.
这题中给出的边是无向的,所以状态可以转移到1, fa[i], son[i], 三个地方。
令 dp[i] 表示从 i 位置走出迷宫的期望。
那么对于叶子结点:
dp[i] = k[i] * dp[1] + (1 - k[i] - e[i]) * (dp[fa[i]] + 1)
对于非叶子结点: len 表示 和结点 i 有关的边数, j 表示 i 的儿子节点
dp[i] = k[i] * dp[1] + (1 - k[i] - e[i]) / len * (dp[fa[i]] + 1 + Σ(dp[j] + 1))

dp[i] = A[i] * dp[1] + B[i] * dp[fa[i]] + C[i]
Σdp[j] = Σ(A[j] * dp[1] + B[j] * dp[i] + C[j])
代入非叶子结点的 dp[i] 中
dp[i] = k[i] * dp[1] + (1 - k[i] - e[i]) / len * (dp[fa[i]] + Σ(A[j] * dp[1] + B[j] * dp[i] + C[j])) + (1 - k[i] - e[i])
   = (k[i] + (1 - k[i] - e[i]) / len * ΣA[j] * dp[1]
   + (1 - k[i] - e[i]) / len * dp[fa[i]]
   + (1 - k[i] - e[i]) / len * ΣB[j] * dp[i]
   + (1 - k[i] - e[i]) / len * ΣC[j] + (1 - k[i] - e[i])
移项,合并同类项得
(1 - (1 - k[i] - e[i]) / len * ΣB[j])dp[i] = (k[i] + (1 - k[i] - e[i]) / len * ΣA[j] * dp[1]
                      + (1 - k[i] - e[i]) / len * dp[fa[i]]
                      + (1 - k[i] - e[i]) *(ΣC[j] / len + 1)
然后通过这个式子推出A[1], B[1], C[1]
要求的是 dp[1], 代入一开始设的式子
dp[1] = A[1] * dp[1] + C[1]
dp[1] = C[1] / (1 - A[1])
当A[1] 和 1 很接近时,表示无解。
 /*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e4 + ;
const int maxm = 1e5 + ;
const int mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T; std::vector<int> vec[maxn];
double A[maxn];
double B[maxn];
double C[maxn];
double k[maxn];
double e[maxn]; void init() {
for(int i=; i<=n; i++)
vec[i].clear();
mes(A, );
mes(B, );
mes(C, );
mes(k, );
mes(e, );
} void dfs(int u, int f) {
int len = vec[u].size();
if(len == && u != ) {
A[u] = k[u];
B[u] = C[u] = - k[u] - e[u];
return ;
}
if(A[u] != 0.0)
return ;
for(int i=; i<len; i++) {
int v = vec[u][i];
if(v == f) continue;
dfs(v, u);
}
double tmpa = 0.0, tmpb = 0.0, tmpc = 0.0;
for(int i=; i<len; i++) {
int v = vec[u][i];
if(v == f) continue;
tmpa += A[v];
tmpb += B[v];
tmpc += C[v];
}
double tmp = (1.0 - (1.0 - k[u] - e[u]) / len * tmpb);
A[u] = (k[u] + (1.0 - k[u] - e[u]) / len * tmpa) / tmp;
B[u] = (1.0 - k[u] - e[u]) / len / tmp;
C[u] = (1.0 - k[u] - e[u]) * (tmpc / len + ) / tmp;
} int main() {
int cas = ;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
init();
for(int i=; i<n; i++) {
int u, v;
scanf("%d%d", &u, &v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=; i<=n; i++) {
scanf("%lf%lf", &k[i], &e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
}
dfs(, -);
printf("Case %d: ", cas++);
if(fabs( - A[]) <= eps) {
printf("impossible\n");
} else {
double ans = C[] / ( - A[]);
printf("%.6f\n", ans);
}
}
return ;
}
 

Maze HDU - 4035(期望dp)的更多相关文章

  1. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

  2. HDU 4035 期望dp

    这道题站在每个位置上都会有三种状态 死亡回到起点:k[i] 找到出口结束 e[i] 原地不动 p[i] k[i]+e[i]+p[i] =1; 因为只给了n-1条路把所有都连接在一起,那么我们可以自然的 ...

  3. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  4. hdu 4035 可能性DP 成都网络游戏

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 获得: 1.首先推断是不是树.事实上,所有的感觉身影,既看边数==算-1是不成立 2.有时候,我告诉孩子来 ...

  5. HDU 3853(期望DP)

    题意: 在一个r*c的网格中行走,在每个点分别有概率向右.向下或停止不动.每一步需要的时间为2,问从左上角走到右下角的期望时间. SOL: 非常水一个DP...(先贴个代码挖个坑 code: /*== ...

  6. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  7. hdu 4035 Maze(期待更多经典的树DP)

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Submi ...

  8. hdu 4035 2011成都赛区网络赛E 概率dp ****

    太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...

  9. HDU 4405 Aeroplane chess 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...

随机推荐

  1. Linux操作系统--定时任务

    最近在学习Linux操作系统.学到了关于定时任务的章节,作为一个总结写下这篇文章.在Linux中,我们可以将耗时大的任务如复制大文件,压缩.解压缩大文件等放进定时任务中(深夜执行,因为工作时间访问量大 ...

  2. SpringBoot实现全文搜索

    • 全文搜索  • solr安装  • solr中文分词  • solr数据库导入  • solr数据查询  • solrj接口调用     1:

  3. hadoop1.0 和 Hadoop 2.0 的区别

    1.Hadoop概述 在Google三篇大数据论文发表之后,Cloudera公司在这几篇论文的基础上,开发出了现在的Hadoop.但Hadoop开发出来也并非一帆风顺的,Hadoop1.0版本有诸多局 ...

  4. AD域安装及必要设置

    本文主要介绍AD域的安装和程序开发必要的设置.   一.安装AD域 运行dcpromo命令,安装AD域. 步骤:     1.win+R     2.dcpromo 图例:           百度百 ...

  5. python3 dict(字典)

    clear(清空字典内容) stu = { 'num1':'Tom', 'num2':'Lucy', 'num3':'Sam', } print(stu.clear()) #输出:None copy( ...

  6. 自动化测试之路2---python安装

    借鉴这位老哥的文章http://www.cnblogs.com/shabbylee/p/6792555.html

  7. #019 还未搞明白的C语言问题

    吐槽一下作业系统 自己电脑上跑的好好地到他这里就给我算错了.... 是我的问题还是系统的问题?????摸不着头脑 总分 12 从键盘任意输入某班30个学生的成绩(成绩类型为整型),保存到数组中,并输出 ...

  8. python3 pickle模块

    import pickle '''将对象转化为硬盘能识别的bytes的过程被称为序列号将bytes转化为对象的过程被称为反序列化'''lst = ["苹果", "橘子&q ...

  9. 修改xampp-apache访问目录

    文章转自 https://my.oschina.net/u/3618644/blog/1569972 问题来源: 一般情况下,每个项目占用一个根目录,而不是一个根目录下面有多个项目. 比如说,安装xa ...

  10. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...