名词解释

场和帧 :    视频的一场或一帧可用来产生一个编码图像。在电视中,为减少大面积闪烁现象,把一帧分成两个隔行的场。

片:             每个图象中,若干宏块被排列成片的形式。片分为I片、B片、P片和其他一些片。

I片只包含I宏块,P片可包含P和I宏块,而B片可包含B和I宏块。

I宏块利用从当前片中已解码的像素作为参考进行帧内预测。

P宏块利用前面已编码图象作为参考图象进行帧内预测。

B宏块则利用双向的参考图象(前一帧和后一帧)进行帧内预测。

片的目的是为了限制误码的扩散和传输,使编码片相互间是独立的。

某片的预测不能以其它片中的宏块为参考图像,这样某一片中的预测误差才不会传播到其它片中去。

宏块 :        一个编码图像通常划分成若干宏块组成,一个宏块由一个16×16亮度像素和附加的一个8×8 Cb和一个8×8 Cr彩色像素块组成。

数据之间的关系:

H264结构中,一个视频图像编码后的数据叫做一帧,一帧由一个片(slice)或多个片组成,一个片由一个或多个宏块(MB)组成,一个宏块由16x16的yuv数据组成。宏块作为H264编码的基本单位。

H264编码过程中的三种不同的数据形式:

SODB        数据比特串 ---->最原始的编码数据,即VCL数据;

RBSP      原始字节序列载荷 ---->在SODB的后面填加了结尾比特(RBSP trailing bits 一个bit“1”)若干比特“0”,以便字节对齐;

EBSP      扩展字节序列载荷 ---- > 在RBSP基础上填加了仿校验字节(0X03)它的原因是: 在NALU加到Annexb上时,需要添加每组NALU之前的开始码StartCodePrefix,如果该NALU对应的slice为一帧的开始则用4位字节表示,ox00000001,否则用3位字节表示ox000001(是一帧的一部分)。另外,为了使NALU主体中不包括与开始码相冲突的,在编码时,每遇到两个字节连续为0,就插入一个字节的0x03。解码时将0x03去掉。也称为脱壳操作。

H264/AVC 的分层结构

H.264的主要目标是:

1.高的视频压缩比;

2.良好的网络亲和性;

为了完成这些目标H264的解决方案是:

1.VCL   video coding layer    视频编码层;

2.NAL   network abstraction layer   网络提取层;

其中,VCL层是对核心算法引擎,块,宏块及片的语法级别的定义,他最终输出编码完的数据 SODB;

NAL层定义片级以上的语法级别(如序列参数集和图像参数集,针对网络传输),

同时支持以下功能:独立片解码,起始码唯一保证,SEI以及流格式编码数据传送,NAL层将SODB打包成RBSP然后加上NAL头,组成一个NALU(NAL单元);

H264网络传输的结构

H264在网络传输的是NALU,NALU的结构是:NAL头+RBSP,实际传输中的数据流如图所示:

NALU头用来标识后面的RBSP是什么类型的数据,他是否会被其他帧参考以及网络传输是否有错误。

NALU头结构

长度:1byte
forbidden_bit(1bit) + nal_reference_bit(2bit) + nal_unit_type(5bit)

1.forbidden_bit:                             禁止位,初始为0,当网络发现NAL单元有比特错误时可设置该比特为1,以便接收方纠错或丢掉该单元。

2.nal_reference_bit:                   nal重要性指示,标志该NAL单元的重要性,值越大,越重要,解码器在解码处理不过来的时候,可以丢掉重要性为0的NALU。

不同类型的NALU的重要性指示如下表所示。

nal_unit_type

NAL类型

nal_reference_bit

0

未使用

0

1

非IDR的片

此片属于参考帧,则不等于0,

不属于参考帧,则等与0

2

片数据A分区

同上

3

片数据B分区

同上

4

片数据C分区

同上

5

IDR图像的片

5

6

补充增强信息单元(SEI)

0

7

序列参数集

非0

8

图像参数集

非0

9

分界符

0

10

序列结束

0

11

码流结束

0

12

填充

0

13..23

保留

0

24..31

不保留

0

所谓参考帧,就是在其他帧解码时需要参照的帧。比如一个I帧可能被一个或多个B帧参考,一个B帧可能被某个P帧参考。

从这个表我们也可以看出来,DIR的I帧是非常重要的,他一丢,那么这个序列的所有帧都没办法解码了;

序列参数集和图像参数集也很重要,没有序列参数集,这个序列的帧就没法解;

没有图像参数集,那用到这个图像参数集的帧都没法解。

3.nal_unit_type:NALU类型取值如下表所示。

nal_unit_type

NAL类型

C

0

未使用

1

非IDR图像中不采用数据划分的片段

2,3,4

2

非IDR图像中A类数据划分片段

2

3

非IDR图像中B类数据划分片段

3

4

非IDR图像中C类数据划分片段

4

5

IDR图像的片

2,3

6

补充增强信息单元(SEI)

5

7

序列参数集

0

8

图像参数集

1

9

分界符

6

10

序列结束

7

11

码流结束

8

12

填充

9

13..23

保留

24..31

不保留(RTP打包时会用到)

RTP 打包时的扩展类型

24 STAP-A Single-time aggregation packet
25 STAP-B Single-time aggregation packet
26 MTAP16 Multi-time aggregation packet
27 MTAP24 Multi-time aggregation packet
28 FU-A
Fragmentation unit
29 FU-B Fragmentation unit
30-31 undefined  

RBSP

RBSP数据是下表中的一种

RBSP类型 所写 描述
参数集 PS 序列的全局信息,如图像尺寸,视频格式等
增强信息 SEI 视频序列解码的增强信息
图像界定符 PD 视频图像的边界
编码片 SLICE 编码片的头信息和数据
数据分割   DP片层的数据,用于错误恢复解码
序列结束符   表明一个序列的结束,下一个图像为IDR图像
流结束符   表明该流中已没有图像
填充数据   亚元数据,用于填充字节

从前面的分析我们知道,VCL层出来的是编码完的视频帧数据,

这些帧可能是I、B、P帧,而且这些帧可能属于不同的序列,再者同一个序列还有相对应的一套序列参数集和图片参数集等等,

所以要完成视频的解码,不仅需要传输VCL层编码出来的视频帧数据,还需要传输序列参数集、图像参数集等数据。

参数集:包括序列参数集 SPS  和图像参数集 PPS
       SPS 包含的是针对一连续编码视频序列的参数,如标识符 seq_parameter_set_id、帧数及 POC 的约束、参考帧数目、解码图像尺寸和帧场编码模式选择标识等等。

PPS对应的是一个序列中某一幅图像或者某几幅图像,

其参数如标识符 pic_parameter_set_id、可选的 seq_parameter_set_id、熵编码模式选择标识、片组数目、初始量化参数和去方块滤波系数调整标识等等。

数据分割:组成片的编码数据存放在 3 个独立的 DP(数据分割,A、B、C)中,各自包含一个编码片的子集。

分割A包含片头和片中每个宏块头数据。

分割B包含帧内和 SI 片宏块的编码残差数据。

分割 C包含帧间宏块的编码残差数据。

每个分割可放在独立的 NAL 单元并独立传输。

NAL的开始和结束

编码器将每个NAL各自独立、完整地放入一个分组,因为分组都有头部,解码器可以方便地检测出NAL的分界,并依次取出NAL进行解码。

每个NAL前有一个起始码 0x00 00 01(或者0x00 00 00 01),解码器检测每个起始码,作为一个NAL的起始标识,当检测到下一个起始码时,当前NAL结束。

同时H.264规定,当检测到0x000000时,也可以表征当前NAL的结束。那么NAL中数据出现0x000001或0x000000时怎么办?H.264引入了防止竞争机制,如果编码器检测到NAL数据存在0x000001或0x000000时,编码器会在最后个字节前插入一个新的字节0x03,这样:

0x000000->0x00000300
0x000001->0x00000301
0x000002->0x00000302
0x000003->0x00000303
解码器检测到0x000003时,把03抛弃,恢复原始数据(脱壳操作)。解码器在解码时,首先逐个字节读取NAL的数据,统计NAL的长度,然后再开始解码。

NALU的顺序要求

H.264/AVC标准对送到解码器的NAL单元顺序是有严格要求的,如果NAL单元的顺序是混乱的,必须将其重新依照规范组织后送入解码器,否则解码器不能够正确解码。

1.序列参数集NAL单元

必须在传送所有以此参数集为参考的其他NAL单元之前传送,不过允许这些NAL单元中间出现重复的序列参数集NAL单元。

所谓重复的详细解释为:序列参数集NAL单元都有其专门的标识,如果两个序列参数集NAL单元的标识相同,就可以认为后一个只不过是前一个的拷贝,而非新的序列参数集。

2.图像参数集NAL单元

必须在所有以此参数集为参考的其他NAL单元之前传送,不过允许这些NAL单元中间出现重复的图像参数集NAL单元,这一点与上述的序列参数集NAL单元是相同的。

3.不同基本编码图像中的片段(slice)单元和数据划分片段(data partition)单元在顺序上不可以相互交叉,即不允许属于某一基本编码图像的一系列片段(slice)单元和数据划分片段(data partition)单元中忽然出现另一个基本编码图像的片段(slice)单元片段和数据划分片段(data partition)单元。

4.参考图像的影响:如果一幅图像以另一幅图像为参考,则属于前者的所有片段(slice)单元和数据划分片段(data partition)单元必须在属于后者的片段和数据划分片段之后,无论是基本编码图像还是冗余编码图像都必须遵守这个规则。

5.基本编码图像的所有片段(slice)单元和数据划分片段(data partition)单元必须在属于相应冗余编码图像的片段(slice)单元和数据划分片段(data partition)单元之前。

6.如果数据流中出现了连续的无参考基本编码图像,则图像序号小的在前面。

7.如果arbitrary_slice_order_allowed_flag置为1,一个基本编码图像中的片段(slice)单元和数据划分片段(data partition)单元的顺序是任意的,如果arbitrary_slice_order_allowed_flag置为零,则要按照片段中第一个宏块的位置来确定片段的顺序,若使用数据划分,则A类数据划分片段在B类数据划分片段之前,B类数据划分片段在C类数据划分片段之前,而且对应不同片段的数据划分片段不能相互交叉,也不能与没有数据划分的片段相互交叉。

8.如果存在SEI(补充增强信息)单元的话,它必须在它所对应的基本编码图像的片段(slice)单元和数据划分片段(data partition)单元之前,并同时必须紧接在上一个基本编码图像的所有片段(slice)单元和数据划分片段(data partition)单元后边。假如SEI属于多个基本编码图像,其顺序仅以第一个基本编码图像为参照。

9.如果存在图像分割符的话,它必须在所有SEI 单元、基本编码图像的所有片段slice)单元和数据划分片段(data partition)单元之前,并且紧接着上一个基本编码图像那些NAL单元。

10.如果存在序列结束符,且序列结束符后还有图像,则该图像必须是IDR(即时解码器刷新)图像。序列结束符的位置应当在属于这个IDR图像的分割符、SEI 单元等数据之前,且紧接着前面那些图像的NAL单元。如果序列结束符后没有图像了,那么它的就在比特流中所有图像数据之后。

11.流结束符在比特流中的最后。

H264--2--语法及结构[5]的更多相关文章

  1. 多媒体开发之---h264 NALU 语法结构

    补充笔记: 关于VCL:VCL层是指视频编码层,VCL NAL 单元是指那些nal_unit_type 值等于 1 到 5(包括 1 和 5)的 NAL 单元,这些单元都包含了视频数据.所有其他的 N ...

  2. h264 流、帧结构

    H264元素的分层结构 H.264编码器输出的Bit流中,每个Bit都隶属于某个句法元素.句法元素被组织成有层次的结构,分别描述各个层次的信息. 在H.264 中,句法元素共被组织成  序列.图像.片 ...

  3. 标记化结构初始化语法 在结构体成员前加上小数点 如 “.open .write .close ”C99编译器 .

    今天在看串口驱动(四)的时候 有这样一个结构体初始化 我很不理解 如下: static struct s3c24xx_uart_port s3c24xx_serial_ports[NR_PORTS] ...

  4. 基础语法-循环结构for

    基础语法-循环结构for 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.for循环格式 for(初始化表达式;循环条件表达式;循环后的操作表达式){ 执行语句(循环体); } ...

  5. 基础语法-循环结构do...while

    基础语法-循环结构do...while 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.do...while语句格式 do{ 执行语句; }while(条件表达式); 温馨提示: ...

  6. 基础语法-循环结构while

    基础语法-循环结构while 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.while语句格式 while(条件表达式){ 执行语句; } 二.while语句案例 /** * ...

  7. 基础语法-选择结构switch

    基础语法-选择结构switch 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Switch语句特点 switch语句选择的类型在jdk1.6只支持四种:byte,short,i ...

  8. 基础语法-判断结构if语句

    基础语法-判断结构if语句 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.单分支语句 /** * 判断结构if单分支语句 * @author 尹正杰 * */ public c ...

  9. javascript基础语法——词法结构

    × 目录 [1]java [2]定义 [3]大小写[4]保留字[5]注释[6]空白[7]分号 前面的话 javascript是一门简单的语言,也是一门复杂的语言.说它简单,是因为学会使用它只需片刻功夫 ...

  10. Shell 语法之结构化命令(流程控制)

    许多程序在脚本命令之间需要某种逻辑流控制,允许脚本根据变量值的条件或者其他命令的结果路过一些命令或者循环执行这些命令.这些命令通常被称为结构化命令.和其他高级程序设计语言一样,shell提供了用来控制 ...

随机推荐

  1. linux 服务脚本

    #!/bin/bash # # chkconfig: # description: my_SERVICE_NAME is a my Service # # common function . /etc ...

  2. MFC定时器的使用

    巧妙地使用定时器能达到意想不到的效果,写界面的时候能实现渐变,也能帮助多线程控制等我们知道,在VC的MFC中,已经为我们封装好了很多全面和强大的函数集,所以在MFC编程时,巧妙地调用MFC函数库可以为 ...

  3. CF919F A Game With Numbers

    题目:(luogu翻译错的很多) Alice和Bob玩游戏,每人有8张牌,牌的值为0~4.每一轮当前玩家选择自己的牌A和对手的牌B,然后将A的值变为( A + B )%5,其中A和B都不是0. 当一个 ...

  4. 看完这篇 你就能完全操作git 远程分支的增、删、改、查了

    最近项目中又用到了git所以在此总结一番,这篇主要针对的是怎么创建远程分支,如何删除远程分支. 首先,如何创建远程分支.将一系列前期准备工作准备完成后(创建\添加ssh): 在终端键入 git bra ...

  5. [Python3网络爬虫开发实战] 1.5.1-PyMySQL的安装

    在Python 3中,如果想要将数据存储到MySQL中,就需要借助PyMySQL来操作,本节中我们介绍一下它的安装方式. 1. 相关链接 GitHub:https://github.com/PyMyS ...

  6. Ubuntu系统搭建django+nginx+uwsgi

    1. 在开发机上的准备工作 2. 在服务器上的准备工作 3.安装uwsgi 4.编写uwsgi配置文件,使用配置文件启动uwsgi 5. 安装nginx 6. 收集静态文件 7. 编写nginx配置文 ...

  7. POJ3641 (快速幂) 判断a^p = a (mod p)是否成立

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  8. 快捷搜索框(UISearchBar)简单实现 swift

    1.在故事板里面拖入一个搜索栏和一个的tableView.2.创建的ViewController,实现代理:UISearchBarDelegate,UITableViewDataSource,的UIT ...

  9. 全文索引(A-1)-用户数据收集(用户研究)

    推荐系统根据用户的信息和历史行为记录,构造出用户的个性化模型,再依据特定的推荐算法,向用户推荐其可能感兴趣的项目. 如何获取用户的偏好? 建议用户对一些指定项目进行评分,如对:小说.传记.技术书.图画 ...

  10. DD & E-app

    DD & E-app 企业内部开发的E应用 前端 demo https://github.com/open-dingtalk docs https://open-doc.dingtalk.co ...