P3119 [USACO15JAN]草鉴定Grass Cownoisseur

题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

输入输出格式

输入格式:

INPUT: (file grass.in)

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).

The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

输出格式:

OUTPUT: (file grass.out)

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

输入输出样例

输入样例#1:

7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7 
输出样例#1:

6

说明

SOLUTION NOTES:

Here is an ASCII drawing of the sample input:

v---3-->6

7 |\ |

^\ v \ |

| \ 1 | | | v | v 5

4<--2---^

Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling

backwards on the path between 5 and 3. When she arrives at 3 she

cannot reach 6 without following another backwards path.

先tarjan缩点,然后建边。在这个时候我们需要建两条边,一条跑正向,一条反向,说白了就是建一条反向边。
然后在进行双向dfs,跑出从1点所能到达的点的最长链及能到达一点的最长链,更新到达当前点时所能更新出的最大值。

然后进行枚举每一条边,我们将其进行反向,看其反向后是否能连通整个图,若能,更新最大值。

我们更新结果的时候,枚举每一条可以反向的边,只有在这条边可以从1出来并且可以回到1时才可以使用。

#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
int n,m,x,y,s,tot,tat,top,tim;
bool vis[N],vis1[N],vis2[N],vist1[N],vist2[N];
int xx[N],yy[N],in1[N],in2[N],head1[N],head2[N],dfn[N];
int low[N],sum[N],ans1[N],ans2[N],head[N],stack[N],belong[N];
queue<int>q;
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,dis,next,from;
}edge[N],edge1[N],edge2[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int add1(int x,int y)
{
    tat++;
    edge1[tat].to=y;
    edge1[tat].next=head1[x];
    edge2[tat].to=x;
    edge2[tat].next=head2[y];
    head1[x]=head2[y]=tat;
}
int tarjan(int now)
{
    dfn[now]=low[now]=++tim;
    vis[now]=true; stack[++top]=now;
    for(int i=head[now];i;i=edge[i].next)
    {
        int t=edge[i].to;
        if(vis[t]) low[now]=min(low[now],dfn[t]);
        else if(!dfn[t]) tarjan(t),low[now]=min(low[now],low[t]);
    }
    if(low[now]==dfn[now])
    {
        s++,belong[now]=s,sum[s]++;
        for(;stack[top]!=now;top--)
         belong[stack[top]]=s,vis[stack[top]]=false,sum[s]++;
        vis[now]=false,top--;
    }
}
int shink_point()
{
    ;i<=n;i++)
     for(int j=head[i];j;j=edge[j].next)
      if(belong[i]!=belong[edge[j].to])
        add1(belong[i],belong[edge[j].to]);
}
int dfs1(int x)
{
    vis1[x]=true;vist1[x]=true;
    for(int i=head1[x];i;i=edge1[i].next)
    {
        int t=edge1[i].to;
        if(ans1[t]<ans1[x]+sum[t])
        {
            ans1[t]=ans1[x]+sum[t];
            dfs1(t);
        }
    }
    vis1[x]=false;
}
int dfs2(int x)
{
    vis2[x]=true;vist2[x]=true;
    for(int i=head2[x];i;i=edge2[i].next)
    {
        int t=edge2[i].to;
        if(ans2[t]<ans2[x]+sum[t])
        {
            ans2[t]=ans2[x]+sum[t];
            dfs2(t);
        }
    }
    vis2[x]=false;
}
int main()
{
    n=read(),m=read();
    ;i<=m;i++)
     xx[i]=read(),yy[i]=read(),add(xx[i],yy[i]);
    ;i<=n;i++)
     if(!dfn[i]) tarjan(i);
    shink_point();
    ans1[belong[]]=ans2[belong[]]=sum[belong[]];
    dfs1(belong[]);dfs2(belong[]);
    *sum[belong[]];
    ;i<=m;i++)
    {
        x=belong[yy[i]],y=belong[xx[i]];
        if(vist1[x]&&vist2[y])
         answer=max(answer,ans1[x]+ans2[y]);
    }
    printf(]]);
    ;
}

拓扑排序:

这个题原来是打算用来练拓扑排序的,结果做了一天的拓扑排序发现不过样例、、、、

为什么会用拓扑排序??

因为我们用拓扑排序的话可以轻易地找到最长链。

怎么拓扑排序??

我们如果直接进行拓扑排序的话,我们会意识到一个问题:缩完点以后直接统计出来入度为零的点并非是我们所需要的点1,我们要跑最长链的话我们需要从1点开始跑,也就是说我们的起点必须是1,怎样做到这一点??我们要做到起点是一的话我们必须让1的入度为零,从一点开始更新与他相连的点。从新统计他们的入读,也就是说我们将这个可能出现环的图抽离成一颗树,这棵树的树根为1点。然后再进行拓扑排序,找出最长链。

最后在进行枚举边,进行更新、

#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
int n,m,x,y,s,tot,tat,top,tim;
bool vis[N],vis1[N],vis2[N];
int xx[N],yy[N],in1[N],in2[N],head1[N],head2[N],dfn[N];
int low[N],sum[N],ans1[N],ans2[N],head[N],stack[N],belong[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,from,next;
}edge[N],edge1[N],edge2[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int add1(int x,int y)
{
    tat++;
    edge1[tat].to=y;
    edge1[tat].next=head1[x];
    edge2[tat].to=x;
    edge2[tat].next=head2[y];
    head1[x]=head2[y]=tat;
}
int tarjan(int now)
{
    dfn[now]=low[now]=++tim;
    vis[now]=true;stack[++top]=now;
    for(int i=head[now];i;i=edge[i].next)
    {
        int t=edge[i].to;
        if(vis[t]) low[now]=min(dfn[t],low[now]);
        else if(!dfn[t]) tarjan(t),low[now]=min(low[t],low[now]);
    }
    if(low[now]==dfn[now])
    {
        s++,belong[now]=s,sum[s]++;
        for(;stack[top]!=now;top--)
          belong[stack[top]]=s,sum[s]++,vis[stack[top]]=false;
        vis[now]=false;top--;
    }
}
int shink_point()
{
    ;i<=m;i++)
     for(int j=head[i];j;j=edge[j].next)
      if(belong[i]!=belong[edge[j].to])
          add1(belong[i],belong[edge[j].to]);
}
int dfs1(int s)
{
    for(int i=head1[s];i;i=edge1[i].next)
    {
        int t=edge1[i].to;
        if(!in1[t]) dfs1(t);
        in1[t]++;
    }
}
int dfs2(int s)
{
    for(int i=head2[s];i;i=edge2[i].next)
    {
        int t=edge2[i].to;
        if(!in2[t]) dfs2(t);
        in2[t]++;
    }
}
int tpsort(int *in,Edge *edge,int *head,bool *vis,int *ans)
{
    queue<int>q;
    q.push(belong[]);
    while(!q.empty())
    {
        int x=q.front();q.pop();vis[x]=true;
        for(int i=head[x];i;i=edge[i].next)
        {
            int t=edge[i].to;
            in[t]--;
            if(!in[t]) q.push(t);
            ans[t]=max(ans[t],ans[x]+sum[t]);
        }
    }
}
int main()
{
    n=read(),m=read();
    ;
    ;i<=m;i++)
     xx[i]=read(),yy[i]=read(),add(xx[i],yy[i]);
    ;i<=n;i++)
     if(!dfn[i]) tarjan(i);
    shink_point();
    dfs1(belong[]),dfs2(belong[]);
    ans1[belong[]]=ans2[belong[]]=sum[belong[]];
    tpsort(in1,edge1,head1,vis1,ans1);
    tpsort(in2,edge2,head2,vis2,ans2);
    answer=*sum[belong[]];
    ;i<=m;i++)
    {
        x=belong[yy[i]],y=belong[xx[i]];
        if(vis1[x]&&vis2[y])
         answer=max(answer,ans1[x]+ans2[y]);
    }
    printf(]]);
    ;
}

洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  2. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  4. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  5. 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur

    原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...

  6. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  7. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  9. P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路

    https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...

随机推荐

  1. [Python3]Python官方文档-Python Manuals

    简介 一般情况下,初学者都不愿意直接去浏览Python Manuals,即Python自带的官方文档.尤其是只有英文版的情况下,初学者更加不会去使用该官方文档了. 在这里笔者强力推荐初学者经常学会使用 ...

  2. yii 和 zend studio 集成

    yii是基于测试驱动的,而zend studio是一个好用的ide.集成就是必须的. 本文适合喜欢使用ide的开发者,vim用户或者文本编辑器使用者请忽略. 本文使用的是最新的zend studio ...

  3. vue render {} 对象 说明文档

    Vue学习笔记进阶篇——Render函数 http://www.mamicode.com/info-detail-1906336.html 深入data object参数 有一件事要注意:正如在模板语 ...

  4. nginx可用来干什么?

    1.静态HTTP服务器 首先,Nginx是一个HTTP服务器,可以将服务器上的静态文件(如HTML.图片)通过HTTP协议展现给客户端. 配置: server { listen80; # 端口号 lo ...

  5. Python Syntax Summary

    # _*_ coding: utf-8 _*_ """########################################################## ...

  6. 32位和64位系统下 int、char、long、double所占的内存

    32位和64位系统下 int.char.long.double所占内存

  7. JavaScript—获取当下往后七天的时间

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. Rust所有权语义模型

    编程语言的内存管理,大概可以分为自动和手动两种. 自动管理就是用 GC(垃圾回收)来自动管理内存,像 Java.Ruby.Golang.Elixir 等语言都依赖于 GC.而 C/C++ 却是依赖于手 ...

  9. 嵩天老师的零基础Python笔记:https://www.bilibili.com/video/av15123607/?from=search&seid=10211084839195730432#page=25 中的42-45讲 {字典}

    #coding=gbk#嵩天老师的零基础Python笔记:https://www.bilibili.com/video/av15123607/?from=search&seid=1021108 ...

  10. 剑指Offer(书):机器人的运动范围

    题目:地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能够进 ...