这一课主要是从怎样推断一个机器学习分类算法里拟合的參数是最佳參数引出函数间隔和几何间隔的定义。

1、函数间隔

如果假想函数

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">,,那么能够知道y=1;反之则y=0
。所以当。我们能够非常确定的觉得y=1;当,能够非常确定地觉得y=0。

所以在分类算法中。我们在训练样本时得到这两个结果的时候,就能够知道选择的參数能非常好的拟合数据。能非常有自信地觉得我们的分类器是符合数据事实的。因此我们数据能够引出函数间隔的定义。

给定某一个数据案例。假想函数为(用(w,b)表示表示为b,表示为w,整个假想函数的结果表示为{-1,1})。我们能够定义基于參数(w,b)的这个数据案例的函数间隔为:

因此可知,假设要得到一个值尽可能大的函数间隔。在时,须要为一个尽可能大的正数即为。在时,须要为一个尽可能大的负数即为。所以我们能够推出

当函数间隔大的时候,算法选择的參数能更好的模拟数据的现实能对測试数据集做出更好的猜測。

在给定的整个训练数据集上。函数间隔为:

2、几何间隔

图1

假设假想函数,图1中的线表示,称为分隔超平面(用来将数据集分隔开来的直线,也叫决策边界)。

图1中全部数据点都在二维平面上。所以此时分隔超平面为一条直线。可是假设全部数据点是在三维空间里。则分隔超平面为一个平面。

假设数据在n维空间里。则分隔超平面为n-1维的超平面。

可知数据点里决策边界越远,其最后的预測结果就越可信。

图1中的A点离决策边界最远,说明能够很确定的觉得它属于y=1;而c点最靠近决策边界,仅仅要略微改变下决策边界就能够推断其属于y=0。

因此。可知分隔超平面(决策边界)的选择取决于离分隔超平面近期的点与分隔超平面之间的间隔。这间隔就是几何间隔。支持向量就是离分隔超平面近期的点。

几何间隔越大。说明分类器越可信。

图2

按图2可定义几何间隔,已知A为,假想函数为,可知w是分隔超平面的法向量,w/||w||为分隔超平面的单位法向量。点A能够代表y=1的情况,如果AB=
,所以B(,0)。所以能够得到例如以下等式:

所以求解可得:

这个求解的仅仅是y=1的情况。所以综合y=-1的情况可定义A点的几何间隔为:

在给定的整个训练数据集上。几何间隔为

3、函数间隔和几何间隔的关系

函数间隔/||w|| =几何间隔

函数间隔会随着w和b的缩放而缩放。可是对于算法的參数选取没有意义。几何间隔不会随着w和b的缩放而缩放。

斯坦福《机器学习》Lesson6感想———1、函数间隔和几何间隔的更多相关文章

  1. [置顶] NB多项式事件模型、神经网络、SVM之函数/几何间隔——斯坦福ML公开课笔记6

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9722701 本篇笔记针对斯坦福ML公开课的第6个视频,主要内容包括朴素贝叶斯 ...

  2. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  3. cs229 斯坦福机器学习笔记(一)-- 入门与LR模型

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...

  4. 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  5. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  6. [4] 算法之路 - 插入排序之Shell间隔与Sedgewick间隔

    题目 插入排序法由未排序的后半部前端取出一个值.插入已排序前半部的适当位置.概念简单但速度不快. 排序要加快的基本原则之中的一个: 是让后一次的排序进行时,尽量利用前一次排序后的结果,以加快排序的速度 ...

  7. [机器学习&数据挖掘]机器学习实战决策树plotTree函数完全解析

    在看机器学习实战时候,到第三章的对决策树画图的时候,有一段递归函数怎么都看不懂,因为以后想选这个方向为自己的职业导向,抱着精看的态度,对这本树进行地毯式扫描,所以就没跳过,一直卡了一天多,才差不多搞懂 ...

  8. 【原】Coursera—Andrew Ng斯坦福机器学习(0)——课程地址和软件下载

    斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提 ...

  9. 斯坦福机器学习视频笔记 Week6 关于机器学习的建议 Advice for Applying Machine Learning

    我们将学习如何系统地提升机器学习算法,告诉你学习算法何时做得不好,并描述如何'调试'你的学习算法和提高其性能的“最佳实践”.要优化机器学习算法,需要先了解可以在哪里做最大的改进. 我们将讨论如何理解具 ...

随机推荐

  1. java中的equals与==的区别

    equals是Object类的公共方法,方法内部是用==实现的.但是很多类都重写了equals方法,例如基本数据类型的封装类和String类,重写后比较的是对象的值或者内容是否相同.而==是比较地址, ...

  2. redis配置cluster分布式集群

    #下载最新的redis5. wget http://download.redis.io/releases/redis-5.0.3.tar.gz .tar.gz cd redis- make make ...

  3. 项目-开发手机app

    一.  安装Hbuilder,和夜神安卓模拟器 注:夜神模拟器,如过windows中安装了hyper-v,需要卸载,不然会死机 二. Hbuilder简介 官网:http://www.dcloud.i ...

  4. 大数据学习——sqoop导入数据

    把数据从关系型数据库导入到hadoop 启动sqoop 导入表表数据到HDFS 下面的命令用于从MySQL数据库服务器中的emp表导入HDFS. sqoop import \ --connect jd ...

  5. numpy之flatnonzero函数

    Return indices that are non-zero in the flattened version of a. This is equivalent to a.ravel().nonz ...

  6. HDU-4849 Wow! Such City!,最短路!

    Wow! Such City!    题意:题面很难理解,幸亏给出了提示,敲了一发板子过了.给出x数组y数组和z数组的求法,并给出x.y的前几项,然后直接利用所给条件构造出z数组再构造出C数组即可,C ...

  7. 【Luogu】P1948电话线(二分SPFA)

    题目链接 二分最长的电话线长度.把所有大于这个长度的边权设成1,小于等于的设成零,然后跑SPFA看dis[n]是否>k.若>k则l=mid+1 否则r=mid-1 放代码 #include ...

  8. BZOJ 4161 Shlw loves matrixI ——特征多项式

    矩阵乘法递推的新姿势. 叉姐论文里有讲到 利用特征多项式进行递推,然后可以做到k^2logn #include <cstdio> #include <cstring> #inc ...

  9. com.alibaba.fastjson和org.json遍历获取key

    推荐都是用fastjson.org.json好像不支持序列化. com.alibaba.fastjson遍历获取key的方法: //fastjson解析方法 for (Map.Entry<Str ...

  10. LA 2218 半平面交

     题目大意:n名选手参加铁人三项赛,比赛按照选手在三个赛段中所用的总时间排定名次.已知每名选手在三个项目中的速度Ui.Vi.Wi.问对于选手i,能否通过适当的安排三个赛段的长度(但每个赛段的长度都不能 ...