题目链接:https://vjudge.net/problem/HDU-1542

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity. 

InputThe input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.OutputFor each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case. 
Sample Input

2
10 10 20 20
15 15 25 25.5
0

Sample Output

Test case #1
Total explored area: 180.00

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; struct line
{
double le, ri, h;
int id;
bool operator<(const line &a)const{
return h<a.h;
}
}Line[MAXN]; //X用于离散化横坐标,times为此区间被覆盖的次数,sum为此区间被覆盖的长度
double X[MAXN], times[MAXN<<], sum[MAXN<<]; void push_up(int u, int l, int r)
{
if(times[u]>) //该区间被覆盖,则覆盖长度为区间长度
sum[u] = X[r] - X[l];
else //该区间没有被覆盖,如果为单位区间,则覆盖长度为0,否则为两个子区间的覆盖长度之和。
sum[u] = (l+==r)?:sum[u*]+sum[u*+];
} //此种线段树的操作对象为连续型,即最小的元素为长度为1的区间[l,r],其中l和r只代表端点(r-l>=1),用于确定
//区间的位置和长度,l和r本身没有特别的含义。而以往做的什么单点更新之类的,都属于离散型,在l处和r处是有含义的
void add(int u, int l, int r, int x, int y, int v)
{
if(x<=l && r<=y)
{
times[u] += v;
push_up(u, l, r);
return;
} int mid = (l+r)>>;
if(x<=mid-) add(u*, l, mid, x, y, v);
if(y>=mid+) add(u*+, mid, r, x, y, v);
push_up(u, l, r);
} int main()
{
int n, kase = ;
while(scanf("%d", &n) && n)
{
for(int i = ; i<=n; i++)
{
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
Line[i].le = Line[i+n].le = x1;
Line[i].ri = Line[i+n].ri = x2;
Line[i].h = y1; Line[i+n].h = y2;
Line[i].id = ; Line[i+n].id = -;
X[i] = x1; X[i+n] = x2;
} sort(Line+, Line++*n);
sort(X+, X++*n);
int m = unique(X+, X++*n) - (X+); //去重 memset(sum, , sizeof(sum));
memset(times, , sizeof(times)); double ans = ;
for(int i = ; i<=*n-; i++)
{
int l = upper_bound(X+, X++m, Line[i].le) - (X+);
int r = upper_bound(X+, X++m, Line[i].ri) - (X+);
add(, , m, l, r, Line[i].id);
ans += sum[]* (Line[i+].h-Line[i].h);
}
printf("Test case #%d\n", ++kase);
printf("Total explored area: %.2f\n\n", ans);
}
}

HDU1542 Atlantis —— 求矩形面积并 线段树 + 扫描线 + 离散化的更多相关文章

  1. HDU3642 Get The Treasury —— 求矩形交体积 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/HDU-3642 Jack knows that there is a great underground treasury in a ...

  2. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  3. poj-1151矩形面积并-线段树

    title: poj-1151矩形面积并-线段树 date: 2018-10-30 22:35:11 tags: acm 刷题 categoties: ACM-线段树 概述 线段树问题里的另一个问题, ...

  4. POJ-1151-Atlantis(线段树+扫描线+离散化)[矩形面积并]

    题意:求矩形面积并 分析:使用线段树+扫描线...因为坐标是浮点数的,因此还需要离散化! 把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用col表示该区间有多少个下边,sum代表该区 ...

  5. HDU1255 覆盖的面积 —— 求矩形交面积 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/HDU-1255 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input输入数据的第一行是一个正整数T(1<= ...

  6. POJ 1177 Picture(线段树 扫描线 离散化 求矩形并面积)

    题目原网址:http://poj.org/problem?id=1177 题目中文翻译: 解题思路: 总体思路: 1.沿X轴离散化建树 2.按Y值从小到大排序平行与X轴的边,然后顺序处理 如果遇到矩形 ...

  7. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  9. POJ 1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

随机推荐

  1. 一份快速实用的 tcpdump 命令参考手册

    对于 tcpdump 的使用,大部分管理员会分成两类.有一类管理员,他们熟知  tcpdump 和其中的所有标记:另一类管理员,他们仅了解基本的使用方法,剩下事情都要借助参考手册才能完成.出现这种情况 ...

  2. PyMySQL操作mysql数据库(py3必学)

    一,安装PyMySQL Python是编程语言,MySQL是数据库,它们是两种不同的技术:要想使Python操作MySQL数据库需要使用驱动.这里选用PyMySQL驱动. 安装方式还是使用pip命令. ...

  3. 虚拟机(Visual Machine)的云平台的自动伸缩扩容(auto-scaling)技术

    云计算平台中允许客户依据应用的负载进行云计算资源的弹性动态伸缩(理想的情况是实现一个用多少付费多少的模型,最大限度地降低用户的运营成本) 在进行讨论之前,先对几个名词进行定义 1)客户:使用云服务的人 ...

  4. HDU 3062 简单的2-SAT问题

    在2-SAT,最让我纠结的还是添加有向线段的函数了 void add_clause(int i,int a,int j,int b){    int m=2*i+a;    int n=2*j+b;  ...

  5. uva12558 Egyptian Fractions (HARD version)(迭代深搜)

    Egyptian Fractions (HARD version) 题解:迭代深搜模板题,因为最小个数,以此为乐观估价函数来迭代深搜,就可以了. #include<cstdio> #inc ...

  6. struts2 标签库使用

    [引用]json 使用 [引用]struts2 标签库使用 2011-05-11 16:13:00|  分类: 默认分类 |  标签: |举报 |字号大中小 订阅 本文转载自kangzye<st ...

  7. centos下wget时提示unable to resolve host address ...

    网络正常的情况,可以查看/etc/resolv.conf [root@localhost ~]# more /etc/resolv.conf # Generated by NetworkManager ...

  8. 【HDOJ6305】RMQ Similar Sequence(笛卡尔树)

    题意: 给定一个数组a,现在存在一个数组b,其元素值在[0,1]随机生成 若对于a,b,任意rmq问题的最值出现在同一个数组中的位置,则数组b的价值为∑b[i],否则为0,求数组b的期望价值 n< ...

  9. Method and system for early speculative store-load bypass

    In an embodiment, the present invention describes a method and apparatus for detecting RAW condition ...

  10. Back弹出AlertDialog

    package com.pingyijinren.helloworld.activity; import android.content.DialogInterface; import android ...